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Abstract
This work explores the application of the recently proposed circulant decomposition of

square matrices. It is known that dense matrices with some periodicity of entries exhibit

dominance of some of its ’n’ circulant components. First, we analyze the distribution of

the magnitudes of circulant components across various matrices with periodicity, such as

Toeplitz, Hankel, and Symmetric matrices. This analysis reveals the fraction of circu-

lant components required to approximate such matrices reasonably. Such approximated

matrices were earlier used for fast eigenvalue approximations and preconditioning linear

solvers. Here, we propose an iterative multiplication of any two matrices in O(n2log n2)

operations, with well-bound relative errors < 1%, unlike the other methods of approxima-

tion. We employ only a few circulant components of the residue matrices in the iterative

multiplication of two matrices to quadratically converge to low relative errors. We val-

idate our methodology, the iterations required across a diverse set of matrix types, and

the corresponding arithmetic complexity of the algorithm. For reference, we also discuss

two other approximate methods applicable to restricted matrix types, i.e., the mean ap-

proximation suited for fully uncorrelated entries in the two matrices and the low-rank

approximation suited for matrices with a low effective rank.

As an addendum, we also present an approach to solve Toeplitz linear systems in O(n ∗

log n) arithmetic operations using the circulant decomposition, along with the O(n2)

Trench algorithm for exact solutions and another O(n ∗ log n) approximate method pro-

posed elsewhere by others.
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Chapter 1

Introduction

Computation with large matrices presents a significant challenge today as they become

ubiquitous in use. Matrix decomposition, low-rank approximations, and projections on

low-complexity classes are some of the approaches useful in reducing the computation

incurred with dense matrices [1]. Decomposing a given n × n matrix into a sum of n

circulant matrices with periodic relaxations on the unit circle is one potential method [2].

This circulant decomposition can substantially reduce arithmetic operations of computing

for certain matrix evaluations with a modest accuracy. It is useful in approximate sparse

similarity transformations, eigenvalue approximations, and preconditioning linear solvers.

Matrix multiplication, a fundamental operation in numerous applications, can

be particularly time-consuming for large matrices with its O(n3) arithmetic complexity

for n × n matrices. The circulant decomposition allows for approximating a dense ma-

trix using its dominant circulant components, and further, multiplying a circulant and

any other matrix can be accomplished in O(n2 log n) arithmetic operations. Iterative

application of this approach to the residue matrices allows us to reduce the arithmetic

complexity for matrix multiplication with a reasonable accuracy in general.

We first recall that any matrix can be decomposed into n cycles that generate

its 2n-1 diagonals. Later, we show that the decomposition of a matrix into n circulant

matrices with periodic relaxations on the unit circle is equivalent to the decomposition of

a similar matrix into such cycles[2]. By including only the dominant cycles of a similar

matrix in such cycles, we include the dominant circulant components of the given matrix.

The approximated matrix is used for matrix multiplication using the fact that multipli-

cation involving circulant matrices can be done in much less arithmetic complexity.

2
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1.1 Circulant decomposition of Matrix

Cycles of Matrix: Let In be the identity matrix of dimension n, and C be the permu-

tation matrix corresponding to a full cycle.

C =

 0 1

In−1 0


nxn

(1.1)

Any matrix A can be decomposed into n cycles given by a power series in C

such that A = ∑n−1
k=0 ΛkCk, where the Hadamard product A ⊙ Ck = ΛkCk, and Λk are

diagonal matrices. Entries supported on Ck, i.e., diagonal entries of Λk in the above

decomposition, are referred to as kth cycle of the matrix A. [2]

Example 1.1 The decomposition of a matrix into cycles, A = ∑n−1
j=0 ΛjC

j for an order 3

magic square.


a b c

d e f

g h i

 =


a 0 0

0 b 0

0 0 c

C0 +


d 0 0

0 h 0

0 0 c

C1 +


b 0 0

0 f 0

0 0 g

C2 (1.2)

Let the permutation matrix given by a flipped identity matrix be

J =



0 . . . 0 0 1

0 . . . 0 1 0

0 . . . 1 0 0
... . . . 0 0 0

1 . . . 0 0 0


n×n

(1.3)

Remark 1.1 W 2 = CJ , and any circulant matrix has an eigen decomposition R =

WΛW †. R is also given by R = W †Λ̃W where Λ̃ = CJΛJT CT . Thus for 1 ≤ k ≤ n− 1,

we have Λ̃(k, k) = Λ(n− k, n− k) and Λ(0, 0) = Λ̃(0, 0).[2]

Lemma 1.2: Given diagonal matrices Dk with Dk(q, q) = ei 2πkq
n (for 0 ≤ q ≤ n− 1) and

any cirulant matrix R with eigenvalues given by a diagonal matrix Λ̃, the matrices RDk

and Λ̃Ck are similar.[2]
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Proof: Using W for a linear transformation of RDk,

WRDkW † = WW †Λ̃WDkW † (1.4)

= Λ̃WDkW † (1.5)

= Λ̃Ck. (1.6)

The substitution WDkW † = Ck, can be deduced by evaluating its (p, l)th entry,

(p, l)th entry of WDkW † = 1
n

n−1∑
q=0

e−i 2πpq
n ei 2πkq

n ei 2πql
n (1.7)

= 1
n

n−1∑
q=0

e−i
2π(−p+k+l)q

n (1.8)

= 1 when p = l + k mod n, (1.9)

0 otherwise (1.10)

The matrix Λ̃Ck is sparse and represents a single cycle, while the similar matrix RDk

is dense. Remark recalls that any matrix decomposes into such cycles. The cyclic de-

composition of a matrix A is equivalent to a circulant decomposition of a transformed

similar matrix WAW †. Conversely, a circulant decomposition of the given matrix A is

equivalent to a cycle decomposition of the transformed similar matrix WAW †; the same

is proved in the theorem below.[2]

Remark 1.3 W 2 = CJ , and any circulant matrix has an eigen decomposition R =

WΛW †. R is also given by R = W †Λ̃W where Λ̃ = CJΛJT CT . Thus, for 1 ≤ k ≤ n− 1,

we have Λ̃(k, k) = Λ(n− k, n− k) and Λ(0, 0) = Λ̃(0, 0).

proof Consider a matrix B = WAW †. Recalling its decomposition into cycles, and us-

ing the substituion Ck = WDkW † from proof of Lemma 1.3, we have B = ∑n−1
k=0 Λ̃Ck =∑n−1

k=0 Λ̃kWDkW †, where Λ̃k are diagonal matrices. Thus, the original matrix A is given

by:

A = W †BW =
n−1∑
k=0

W †Λ̃kWDk =
n−1∑
k=0

RkDk (1.11)

1.1.1 Circulant Component of Matrix:

The n circulant components of any matrix A can be found by using two methods:
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• Recursion based on orthogonality

• Using Similarity transformation.

Recursive method for circulant components: The following procedure gives the

individual circulant components for a given matrix A.[2]

• Initialize A0 = A.

• for k = 0, 1, 2, . . . , n− 2

– Rk(0, j) = 1
n
(⃗1T Ak⊙Cj 1⃗) (i.e., To discover the n unknown entries of circulant

Rk, average the entries of Ak in the appropriate cycles for j = 0, 1, . . . n − 1,

and 1⃗, an n-vector with all ones as entries.)

– Ak+1 = (Ak −Rk)D−1.

• Rn−1 = An−1

The arithmetic complexity for finding each circulant component is O(n2); to find all

circulant components, it requires O(n3) operations, and a particular circulant component

cannot be found directly as this process is sequential.

Using similarity transformation: The circulant matrix component Rk of A can also

be evaluated using an inverse transformation of a cycle of WAW †, given by W †(WAW †⊙

Ck)W . Note that R0 minimizes ∥A − R∥F for any circulant matrix. We know that the

cycles of matrix A are similar to the circulant components of matrix B, and vice-versa,

where matrix B can be written as B = WAW †. From the remark 1.3, any matrix A can

be decomposed into cycles A = ∑n−1
j=0 ΛjC

j. Let us consider the circulant decomposition

of matrix B as B = ∑n−1
i=0 RiDi where Ri is the ith circulant component of matrix B from

similarity transformation the ith cycle of matrix A is similar to the ith circulant component

of B i.e. The circulant component Ri can be written as inverse transformation of cycle

Λi. Hence the ith circulant component of B can be written as W †(Λi)W , which can be

further written as W †(WAW † ⊙ Ck)W

Rk = W †(WAW † ⊙ Ck)W (k-th circulant component of matrix A) (1.12)

Computing WAW †: The (p, q) entry of the matrix B = WAW † is given by

B(p, q) = 1
n

n∑
k=1

n∑
j=1

e−i 2πpk
n A(k, j)ei 2πjq

n (1.13)
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Relation with fast Fourier transform: If F(A) represents DFT of the columns

of matrix A, we have

B = 1
n

F(F(A)†)† (1.14)

If we denote the two-dimensional DFT of the matrix A by F 2(A), then we have B = F2(A)
n

.

Thus, WAW † is computed in 2n2 log n time. Similarly, the inverse transformation W †AW

can be done in 2n2 log n operations.

Remark 1.4: Any kth circulant component of a matrix A given by W †(WAW †⊙

Ck)W can be found in 3n2 log n + n log n + n arithmetic operations.

• WAW † can be evaluated in 2n2 log n arithmetic operations using Fast-Fourier Trans-

form (FFT).

• B̃ = WAW †⊙Ck can be done in n operations, where B̃ has only n non-zero entries

corresponding to the kth cycle.

• W †B̃W can be done in n2 log n + n log n operations i.e. an inverse transformation.

Hence finding Rk using equation 1.12 takes 3n2 log n + n log n + n operations. Additional

circulant components do not require a re-evaluation of WAW †, and hence can be attained

in n2 log n + n log n + n arithmetic operations.

1.2 Weights for circulant components:

The weight of a circulant component in this decomposition provides us its significance in

approximating the matrix.

Weight of a cycle -wi: Let B = ∑n−1
i=0 RiDi. The relative weight of circulant

component Ri in B is wi = ∥Ri∥2
F∑

i
∥Ri∥2

F
. When B = WAW †, note that wi also represents

the relative weight of the cycle i in A, and ∑i wi = 1, 0 ≤ wi ≤ 1.

If one circulant component holds more weight in a matrix, we can approximate the matrix

effectively using that specific component. Weight distribution of circulant components

of a matrix guide us in selecting the right circulant components for the approximation.

All the matrices explained in Appendix 2 study how the weight distribution of circulant

components depends on the structure of the matrix. Figures 1.1 and 1.2 shows the weight

distribution of randomly generated matrices, 1.3 shows the distribution of weights of
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circulant matrices of buses, 1.4 shows the weight distribution of images and 1.5 illustrate

the weight distribution of circulant components of the dft matrix and the dense matrix. To

ensure fair comparison across matrices explained in appendix-2, all matrices are generated

with a size of 250x250 using the numpy and scipy libraries

Figure 1.1: Weight Distribution of cycles for matrices generated from a uniform distri-
bution for size 250

1.3 Approximating a Matrix

The decomposition of square matrices into circulant components offers a significant in-

sight any n× n square matrix A can be expressed as the sum of n circulant matrices Ri

along with their associated diagonal matrices Di, representing the adjustments on the unit

circle. This foundational result implies that the complexity of any matrix can be approx-

imated using a reduced set of circulant matrices. The representation An×n = ∑n
i=1 RiDi

illustrates the decomposition of a matrix A into its constituent circulant components. To

approximate A, we can employ a reduced number k of these circulant components. i.e.,

A can be approximated as

A ≈
k∑

i=1
RiDi (1.15)
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Figure 1.2: Weight Distribution of cycles for matrices generated from a mean zero distri-
bution for size 250

Figure 1.3: Weight Distribution of cycles for Bus matrices taken from Matrix-Market

The selection of the appropriate k is pivotal. Utilizing k circulant components instead of

the complete set of n reduces computational complexity significantly while introducing

some error compared to the full representation. The equation quantifies the relative error

in the matrix approximation

Relative error = ∥A− Ak∥
∥A∥

where Ak represents the matrix approximation obtained using k circulant matrices. De-

termining the optimal k necessitates a trade-off between reduced computational com-

plexity and acceptable approximation error. Experimentation with varying values of k,
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Figure 1.4: Weight Distribution of cycles for Images taken from Dog-Vs-Cat classification
dataset

Figure 1.5: Weight Distribution of cycles for a synthetic periodic DFT matrix generated
for size 250 on the left, and the dense symmetric DFT matrix based on physics on the
right. See 6

typically including k = 1 and k = log n, is often conducted to assess the performance of

the approximation. In selecting k circulant components for the approximation, priority

is accorded to those with greater weight, as determined by the underlying mathematical

formulation.

Fraction of Weights Considered for approximation: The Weight of the

circulant component is explained in section 1.2. The fraction of weight considered for

approximation is given by

fraction =
∑k

i=1 wi∑n
i=1 wi

(1.16)

This fraction of weights, while considering the k-circulant components, depicts the better

approximation of the matrices. As this approximation approaches one, the error in the

approximation reduces to zero. There should be a trade-off between the value k and the

fraction for weights we get by considering the k circulant components. Even if the k value
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is less, but the fraction of weights is more, the error in the approximation can be reduced.

Plots 7.1,7.3, 7.4, 7.5 in Appendix 3 explain how the error in approximation changes with

the number of circulant components considered and the matrix’s size.

1.3.1 Analysis:

• The relative distribution of weights of the circulant components depends on the

periodicity of elements in the matrix, and this periodicity can be non-trivial.

• From figures 1.1 and 1.2 the random matrices generated from a distribution with

a non-zero mean have the first circulant component very dominant when compared

to the matrices generated from a mean-zero distribution.

• From figures 1.1 and 1.2, it is also evident that in the matrices having periodicity

in the elements, very few circulant components are dominant. Toeplitz has two

dominant peaks in the distribution of magnitudes of circulant components.

• Figure 1.3 shows the weight distribution of circulant components of the bus matrices

taken from the matrix market; from these figures, it can concluded that all the

circulant components of the bus matrices have almost the same weights, so they

cannot be approximated easily with a few circulant components.

• Figure 1.4 shows the weight distribution of circulant components of the images;

from these, it is clear that these images can be approximated with few circulant

components, especially dominated by the zero frequency circulant component.

• Figure 1.5

– Image on the left shows the synthetic DFT matrix weight distribution; it shows

that this DFT matrix can be approximated using a few circulant compnents.

– The Image on the right shows the circulant weight distribution for a dense

DFT matrix arising in a physical system.

• All these conclusions can be inferred from the matrix approximation plots shown

in Appendix 3.



Chapter 2

Multiplication

Matrix multiplication is a fundamental operation in linear algebra with numerous appli-

cations in computer science and beyond. Its algorithmic complexity has been extensively

studied for decades. In 1969, Strassen made a breakthrough by showing that n× n ma-

trices can be multiplied faster than the naive cubic time algorithm [3]. This sparked

significant progress in finding lower bounds on the exponent ω, which is defined as the

smallest constant such that for all ϵ > 0, n×n matrices can be multiplied using O(nω+ϵ)

arithmetic operations. Recently, it has been shown that ω < 2.373 [4], [5], [6], and a

new result by Duan, Wu, and Zhou further improves this to ω < 2.3719 [7] The ideal

bound would be ω = 2, suggesting a near-linear time algorithm for matrix multiplication.

However, a series of studies [7, 8, 9, 10] has demonstrated that current techniques can-

not achieve ω = 2. Since 1986, all advancements in matrix multiplication have relied on

various forms of the laser method [6, 11, 7]. The strongest limitation of the laser method

and its variants is that they cannot show ω < 2.3078[7]. To overcome this challenge,

researchers have explored strategies like matrix decompositions, low-rank approxima-

tions, and projections onto low-complexity classes, which help reduce the computational

complexity associated with dense matrices. In this work, two algorithms for matrix mul-

tiplication are presented and compared for their potential advantages and disadvantages

against the circulant decomposition method[2].

• Mean Approximated Matrix Multiplication

• Low-rank approximated matrix multiplication

• Matrix multiplication using Circulant decomposition

11
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2.1 Mean Approximation method:

In matrix multiplication, each element in the resulting matrix arises from the dot product

of corresponding columns and rows of the input matrices. For instance, in the matrix

multiplication M = AB, the ijth element of the resulting matrix M is computed as the

dot product of the ith column of matrix A (denoted as ai) and the jth row of matrix B

(denoted as bj).

mij = ai · bj (2.1)

≈ E[ai · bj] (2.2)

≈ n ∗ E[ai] ∗ E[bj] (2.3)

The mean approximation method approximates the result mij with the mean value of the

dot product ai · bj. It relies on the assumption of uncorrelated entries rows of matrix A

and the columns of matrix B. However, it’s important to note that while this assumption

always holds for random matrices, it is not generally applicable.

Algorithm Performance and Considerations: The effectiveness of this algorithm

is contingent upon the fact that the rows in A and the columns in B are not correlated.

Deviations from this assumption may lead to inaccuracies in the computed results. The

plots presented in Figure 2.4 illustrate the algorithm’s performance on randomly gener-

ated matrices and provide insights into its limitations, mainly when applied to network

matrices from the matrix market and Non-Randomly Generated matrices(images).

2.2 Low-Rank Approximation

The low-rank approximation technique is applied to matrix multiplication C = AB. The

method involves expressing the product as a sum of outer products of selected columns

from matrix A and corresponding rows from matrix B[12]

C ≈
k∑

i=0
ai · bj

T (2.4)
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Selecting c columns(rows) for low-rank approximation is as follows. The matrix’s kth

column(row) is selected using rejection sampling with probability pk. The complete al-

gorithm is as follows.

• Initialization:

– Define c as the number of samples.

– pk as the probability mass function for each k ∈ {1, 2, . . . , n}.

– Define A(k) and B(k) for each k.

– Initialize M as the zero matrix for storing the approximation of AB

– Initialize t = 0 for counting the accepted samples.

• Random Sampling:

– Sample an index k uniformly from {1, 2, . . . , n}

– Generate a uniform random number U from [0, 1].

– accept k if max pkU < pk.

– If k is accepted, increment t by 1.

• Sum Rank-One Matrices:

– For each accepted k, update the approximation M :

M ←M + A(k)B(k)

cpk

. (2.5)

– Continue sampling until t = c.

• Error Evaluation:

– Compute the relative error in the Frobenius norm:

E = ∥M − AB∥F

∥AB∥F

(2.6)

2.2.1 Experiments:

Matrices are generated using the singular value decomposition UΣV T . The singular

values given by Σkk are fixed as follows

• Class-1: e
−(k−1)

10

• Class-2: n−k+1
n

• Class-3: log n−k+1
log n
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Figure 2.1: Singular Values of the three classes

Figure 2.1 shows the variations of the singular values for size 250. From the figure, it

is clear that the matrices generated with eigenvalues belonging to class-1 are low rank

compared to others. Using these singular values, two types of trial matrices are generated.

Two types of matrices are generated with the three classes of singular values, and the

relative error in the multiplication is examined, varying with size for the same number of

samples (c = 0.2 ∗ n). The relative errors in the multiplication for two types of matrices

generated from 3 classes of singular values are shown in the figure 2.2

Building Trial Matrices:

• Type-1:

– Initialize: M1 ← rand[n, n] and M2 ← rand[n, n]

– Generate singular vectors: Q1R1 ←M1 and Q2R2 ←M2; QR factorization of

the two matrices.

– trial Matrices: A ← Q1ΣQT
2 ; generate test matrix for given singular value

distribution.

• Type-2:

– Initialize: M1 ← rand[n, n] and M2 ← rand[n, n] and M3 ← rand[n, n]

– Generate singular vectors: Q1R1 ← M1 and Q2R2 ← M2 and Q3R3 ← M3;
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Figure 2.2: Figure shows the variation of relative error with size for each class of singular
values and two types of matrices

QR factorization of the three matrices.

– trial Matrices: A← Q1ΣQT
2 and B ← Q2ΣQT

3 ; generate test matrix for given

singular value distribution.

Conclusions:

• Matrices generated from type-2 are effectively low rank, so the relative error in

matrix multiplication is less than type-1 for all three classes.

• Class 1 matrices feature an efficient low rank that remains constant regardless of

matrix size. This effective low rank is smaller than the number of rows and columns

sampled in a large matrix, resulting in reasonable approximations of the product

AB as n increases.

• This method is advisable only for low-rank matrices.

2.3 Circulant Decomposition

The circulant decomposition of the matrix explained in Chapter 1 is used for matrix

multiplication. The two matrices involved in the multiplication are decomposed into

prominent circulant components; these circulant components are involved in the multi-
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plication. From Remark 1.4, the indices of circulant components of a matrix in the order

of prominence can be found in O(n2 log n). The algorithm 1 explains the complete matrix

multiplication using the circulant components after the decomposition of the matrices.

The residues are used iteratively to reduce the error in multiplication. cycles A and cy-

cles B are lists representing the indices of the circulant components of matrices A and

B, respectively, in the order of their dominance. Consider the matrices A and B. These

matrices can be written as A = Ai + ∆A and B = Bj + ∆B, where Ai contains the top

k circulant components of A and Bj contains the top k circulant components of B.

Ai =
∑

k

RaiDi Bj =
∑

k

RbjDj (2.7)

∆A = A− Ai and ∆B = B −Bj (2.8)

where

• Rai is the ith circulant component of A

• Rbj is the jth circulant component of B

Now, matrix multiplication M = AB can be written as follows.

M = A×B (2.9)

= (Ai + ∆A)× (Bj + ∆B) (2.10)

= (AiBj) + (Ai∆B) + (∆ABj) + (∆A∆B) (2.11)

This multiplication is approximated with the first three terms by removing the residues,

i.e., Mapp can be written as

Mapp = (AiBj) + (Ai∆B) + (∆ABj) (2.12)

In practice, the first two terms can be evaluated together as AiB. The relative error

in the multiplication is given as ∥M−Mapp∥
∥M∥ . This relative error in the multiplication can

be reduced by iteratively using ∆A and ∆B again as A and B respectively, ∆A and

∆B contain the remaining circulant components other than that of circulant components

considered in Ai and Bj.
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2.3.1 Arithmetic complexity:

Algorithm 1 Matrix Multiplication with Iterative Refinement
0: procedure Matrix Multiplication(A, B, cycles A, cycles B, iterations)
0: M ← A×B
0: for it← 1 to iterations do
0: selected cycles A← cycles A[1 : num]
0: selected cycles B← cycles B[1 : num]
0: Ai← ∑num−1

i=0 Rai ·Dai

0: Bj ← ∑num−1
i=0 Rbi ·Dbi

0: ∆A← A− Ai
0: ∆B ← B −Bj
0: M ←

(∑num−1
i=0 Rai ·Dai

)
×
(∑num−1

i=0 Rbi ·Dbi

)
+
(∑num−1

i=0 Rai ·Dai

)
×∆B +∆A×(∑num−1

i=0 Rbi ·Dbi

)
0: cycles A← cycles A[num + 1 :]
0: cycles B← cycles B[num + 1 :]
0: A← ∆A
0: B ← ∆B
0: end for
0: err← ∥AB−M∥

∥AB∥
0: end procedure=0

Each iteration in the above multiplication algorithm can be decomposed as

follows

Indices: It is a list of indices of circulant components of matrices A and B in the order

of their energies/magnitudes. Similarity transformation of each matrix using FFT in

n2 log n + n2 operations, and energy of all n circulant components requires n2 operations.

Hence arithmetic complexity to find IndicesA and IndicesB is O(n2 log n).

Finding top k circulant components: After getting the indices of top k

circulant components, each circulant component of a matrix can be found in 3n2 log n +

n log n + n arithmetic operations or less i.e. O(n2 log n).

Calculating Ai and Bj: We have Ai = ∑
k RaiDi and Bj = ∑

k RbjDj. These

two can be done in 2k(n + n2) operations or in O(kn2) complexity.

Calculating ∆A and ∆B: This can be done in O(n2) arithmetic operations.

Multiplication: Total multiplication contains the following terms.

T1 =
(∑

k

RaiDai

)
×
(∑

k

RbiDbi

)
=
(∑

k

RaiDai

)
×Bj =

(∑
k

RaiDai ×Bj

)
(2.13)

• Each term Dai ×Bj can be done in O(n)
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• Each term RaiDai × Bj can be done in O(n2 log n). By considering k terms the

total arithmetic complexity for this term will be O(kn2 log n)

Similarly, the three terms in the multiplication equation 2.11 can be done in 3k(n2 log n+

n) or less. One iteration of the total algorithm can be done in (5n + 3n2 + 7n2 log n)k +

(2n2 log n)operations. By selecting log n circulant components in each iteration the arith-

metic complexity scales to (5n log n+5n2 log n+7n2 log n2). Hence, the theoretical arith-

metic complexity can be said to be O(n2 log n2) which is Õ(n2). This theoretical arith-

metic complexity can be used to check the cross-over with size. From the figure 2.3, the

crossover size for one iteration is around 700.

Figure 2.3: Theoretical crossover for the arithmetic complexity is compared against the
typical arithmetic complexity n3 (For easy understanding, values are scaled with n2)

2.4 Experiments and Analysis

In this section, we investigate the performance of matrix multiplication across various

sizes, ranging from 100 to 300, with a step size of 25. The evaluation compares two
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methods: Mean approximation and circulant decomposition.

2.4.1 Experimental Setup:

Experiments are conducted using numpy and scipy libraries of python. Figures 2.4 com-

pare Mean approximation and circulant decomposition methods. For the circulant de-

composition method, circulant components having a normalized weight of more than 0.5

are considered for multiplication, and the algorithm is iterated once.

2.4.2 Analysis:

• Mean approximation works better on matrices where the entries are independent

• Low-rank approximation method works best when the matrices considered for mul-

tiplication are effectively low rank.

• Incorporating ∆A and ∆B minimizes the relative error in multiplication in the

circulant decomposition approach. Figure 2.4 shows that the relative error in matrix

multiplication approaches a precision of 10−2 with increasing size.

• Circulant Decomposition works better in cases where any random and periodic

matrices are involved.

2.5 Robustness of the circulant decomposition algo-

rithm

From the conclusions drawn from the figure 2.4, it is clear that the errors can be reduced

more by incorporating the terms ∆A and ∆B in the multiplication iteratively. Algorithm

1, is employed on the matrices explained in Appendix 2 for log n iterations; the results in

the multiplication errors varying with size are shown in the plot 7.6. From the plots 2.4

and 7.6, it is evident that the relative error in multiplication reduces as the size increases

for the circulant decomposition method.

2.6 Conclusions

• Error in Multiplication:
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Figure 2.4: Mean and standard deviation of errors in multiplication for both Mean ap-
proximation method and circulant decomposition method
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Matrix Iterations-Taken Cross-over size n
Toeplitz-Toeplitz 1(0.22%) 700

Random Symmetric-Toeplitz 1(0.35%) 700
Toeplitz-Hankel 1 (0.42%) 700

Random General-Toeplitz 1(0.51%) 700
Random Symmetric-Random Symmetric 1(1.01%) 700

Images 2(0.64%) 1,400
Random Symmetric-Hankel 6(1.04%) 4,200

Hankel-Hankel 8(1.02%) 5,600
Random General-Random Symmetric 10(1.03%) 7,000

Random General-Hankel 11(1.04%) 7,700
DFT 16(1.01%) 11,200

Random General-Random General∗ 17(1.04%) 11,900
Dense Matrix 17(1.05%) 11,900
Bus matrices∗∗ 34(0.72%) 23,800

Table 2.1: Table showing the feasible dimension of the matrices considered in the multi-
plication to get RMSE ≈ 1%. ∗Only these random matrices have a non-zero mean. ∗∗
Bus matrices considered are not dense matrices that were nevertheless used for testing
the algorithm’s limitations. Cross-over size n for matrices calculated are approximate, it
differs from the given values as the arithmetic complexity is logarithmic

– From the figure 7.6 in appendix 3, it is clear that the relative error in the

multiplication decreases as the size increases.

– In the experiments done, it is clear that for the same number of iterations,

the relative error in multiplication is less for special structured matrices(e.g.,

Toeplitz).

– The Same algorithm can be diversified and used for any matrix, but different

matrices take a different number of iterations for a given relative error, i.e.,

the smallest matrices required for a gainful application of this algorithm vary

from 700-20,000 depending on the matrix type.

– From the figure 1.2, it is clear that the matrices generated from the mean zero

distribution do not have dominating circulant components; we may require

many more iterations to converge to the required tolerance in relative error

for the case of multiplying two mean-zero random matrices. Also, because the

product of such matrices converges towards the zero matrix, the relative error

may not be the most appropriate metric to estimate the performance of this

algorithm in this case.

• Arithmetic Complexity:
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Figure 2.5: The figures (a) and (b) show the hardware dependencies and the effect of
compiler optimizations (such as auto-vectorization) on the FFT gains versus the exact
multiplication of real matrices of different sizes in terms of the wall-times for execution
in a typical workstation i.e., ratio of wall-times for evaluating WA naively and FFT(A),
where A is a matrix. Note that this reduces to the ratio of the arithmetic complexity of the
two evaluations, i.e., N/(4log(n)), only in a naive serial execution of single instructions.
The linear fit lines represent a c = 20 for smaller values of N shown in (a) and c = 8
for larger N shown in (b) in the gain ratios N

c∗4 log n
. One would like to have c = 1 using

better optimization of the executions

– The figure 2.3 shows the theoretical cross-over of size for better arithmetic

complexity (neglecting the front constant).

– Table 2.1 shows the number of iterations taken by different combinations of

the matrices to get the RMS error < 1% in multiplication. By referring to the

figure 2.3, the feasible size of the matrices for this algorithm is calculated and

is shown in the table.

– Taking figure 2.3 as reference the crossover size of different combinations of

matrices for RMSE error < 1%.

– Our findings in Figure 2.5 suggest that further optimization of the Fast Fourier

Transform (FFT) algorithm specific to the available hardware could signifi-

cantly improve the performance of WA product calculations. Additionally, ex-

ploring alternative optimization strategies tailored to evaluate WAW † within

the proposed circulant multiplication algorithm might be beneficial. Imple-

menting such hardware-aware optimizations for parallel computations is cru-

cial to achieving the crossover sizes depicted in Figure 2.3 on a particular

computing platform.

• Even though we have restricted our discussion to the multiplication of square ma-
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trices, this approach can indeed be used in efficient matrix-vector multiplications

provided the number of vectors multiplying a large matrix is also sufficiently large,

i.e., O(log n). It can also be trivially extended to the multiplication of large rect-

angular matrices using the circulant decomposition of the largest square blocks of

such matrices, and it is attractive when at least one of the dimensions of the prod-

uct matrix is sufficiently large. This dimension required for the matrix in a gainful

application of the algorithm can be inferred from the figure 2.3.



Chapter 3

Toeplitz Linear Solver

3.1 Introduction

Toeplitz linear systems arise in various fields, including the solution of linear ordinary

differential equations, delay differential equations, time series analysis, and orthogonal

polynomials. For large matrices, standard methods like Gaussian elimination become

computationally expensive, scaling as O(n3). To address this, both direct and itera-

tive methods are used to solve Toeplitz linear systems Tx=bTx=b. Direct solvers are

deemed efficient if they operate in O(n2) time; examples include Schur-type methods

[13], Levinson-type methods [14], among others [15]. Notably, a significant category

of direct solvers is based on the displacement equation, employing Gaussian elimination

techniques, such as the Heinig method [16] and the GKO method [17]. However, many of

these fast and superfast methods tend to be numerically unstable [13, 14]. The unique

structure of Toeplitz matrices offers advantages for various algorithms, with the most

commonly used methods for solving Toeplitz linear systems being highlighted here.

3.1.1 Trench Algorithm:

The inversion algorithm proposed by W.F.Trench is applicable only for Strongly nonsin-

gular Matrix. An arbitrary matrix is said to be strongly nonsingular when, in addition to

being nonsingular itself, all its principal submatrices are nonsingular as well[18]. Equiv-

alently, all its principal minors are nonzero. Let us consider a sample Toeplitz matrix of

size n+1×n+1 as Tn+1, and denote the inverse of this matrix as Bn+1 i.e., Bn+1 = T −1
n+1.

24
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The detailed Bn+1 structure is explained in [18]. Using this Trench algorithm, the inver-

sion of the Toeplitz matrix can be found in time complexity of O(n2).[18]

But by using circulant approximation of the Toeplitz matrix the inverse of the Toeplitz

matrix can be done in O(n log n)

3.1.2 Using Circulant Decomposition:

Theorem 3.1: Let T = (ap−q)p,q=1
n be a Toeplitz matrix. If each of the systems of

equations Tx = f , Ty = e1 is solvable, x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T ,

then[20]

• T is invertible

• T −1 = T1U1 + T2U2, where

T1 =



y1 yn . . . y2

y2 y1
. . .

... . . . . . . yn

yn . . . y2 y1


U1 =



1 −xn . . . −x2

1 . . . ...
. . . −xn

1


(3.1)

T2 =



x1 xn . . . x2

x2 x1
. . . ...

... . . . . . . xn

xn . . . x2 x1


U2 =



0 yn . . . y2

0 . . . ...
. . . yn

0


(3.2)

e1 =



1

0
...

0


andf =



0

an−1 − a−1
...a2 − a−n+2

a1 − a−n+1


(3.3)

From the figure 1.1, we can see that in the case of the Toeplitz matrix, the first circulant

component plays a very prominent role, i.e., the Toeplitz matrix can be approximated

very easily with the first circulant component. This circulant component can be used to

find the approximated inverse of the Toeplitz matrix,

This method has three stages in finding the solution of the Toeplitz linear solver.
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• Find the first circulant component of the Toeplitz matrix (Can be done in O(n).

• Find the inverse of the circulant matrix by using the theorem 3.2 [3](O(n log n).

• Multiply the inverted circulant matrix(which is again a circulant matrix) with the

vector (O(n log n).

Remark 3.2: In theorem 3.1, let the Toeplitz matrix T = (ap−q)n
p,q=1 be a circulant

Toeplitz matrix. That is to say, the elements of the matrix T = (ap−q)n
p,q=1 satisfy

ai = ai−n for all i = 1, . . . , n− 1. It is easy to see that f = 0. Thus, x = T −1f = 0[19].

From theorem 3.1, we get

T −1 =



y1 yn . . . y2

y2 y1
. . . ...

... . . . . . . yn

yn . . . y2 y1


(3.4)

To find y in remark 3.2 we need to solve the circulant system of equation Cy = e1

Solving circulant linear system Cy = e1: We have a Circulant linear system

Cy⃗ = e⃗1 (3.5)

we need to covert this to

Ĉ̂⃗y = ̂⃗
e1 (3.6)

From 3.5 we can write

FCF−1Fy⃗ = Fe⃗1 (3.7)

where F is the DFT matrix of size n

Fn =



1 1 1 . . . 1

1 (w)1 (w)2 . . . (w)(n−1)

1 (w2)1 (w2)2
. . . (w2)n−1

... ... ... . . . ...

1 (wn−1)1 (wn−1)2
. . . (wn−1)n−1


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with w = e
πi
n and FF−1 = F−1F = I

By comparing 3.6 and 3.7 we have

Ĉ = FCF−1 (3.8)

̂⃗y = Fy⃗ (3.9)

and ̂⃗
e1 = Fe⃗1 (3.10)

In this 3.8 refers to Cauchy-like matrix of the Circulant matrix. 3.9 refers to the DFT of

y⃗ and 3.10 results in 1⃗. Any Circulant matrix C of the form

C =



a0 an−1 an−2 . . . a1

a1 a0 an−1 . . . a2

a2 a1 a0 . . . a3
... ... ... . . . ...

an−1 an−2 a3 . . . a0


can be written in the form

C = F−1diag(Fa⃗n)F (3.11)

Here, a⃗n = [a0, a1, . . . , an−1] is the vector representation of C Substituting eq 3.11 in eq

3.8 gives Ĉ = diag(Fa⃗n) Which results that the Cauchy-like matrix of a Circulant matrix

is a diagonal matrix

Result 1: The Cauchy-like matrix of a Circulant matrix is a Diagonal matrix with

elements Discrete Fourier transform of vector representation of Circulant matrix.

Solving Cauchy-like linear System

In order to solving eq 3.6 where C is a diagonal matrix with elements of vector Fa⃗n and

from eq 3.10 resulting in unit vector. Hence, the solution of eq 3.6 results in a vector

with elements which are inverse of elements of Fa⃗n.

Result 2: The solution of the Cauchy-like system is the vector of elements inverse of

elements of Fa⃗n. From equation 3.9 y⃗ = F−1̂⃗y which is the first column of the inverse of

Circulant matrix.
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C−1 =



y0 yn−1 yn−2 . . . y1

y1 y0 yn−1 . . . y2

y2 y1 y0 . . . y3
... ... ... . . . ...

yn−1 yn−2 y3 . . . y0



C−1 is the inverse of the first circulant component of the Toeplitz matrix T The time

complexity of this algorithm is O(nlog(n)), where n is the size of the matrix.

However, this method is inefficient as the inverted circulant matrix cannot approximate

the inverted Toeplitz matrix well. So, we cannot use this method to solve the Toeplitz

linear solves. The errors in this method are unreliable, and the algorithm’s time com-

plexity is very low compared to the other methods. Many fast and super-fast algorithms

are available solve the Toeplitz linear solvers. One of the approximated algorithms is the

Sequential Semiseperable method

3.2 Sequential Semiseparable method:

Standard methods for solving systems of linear equations become computationally expen-

sive for large Toeplitz matrices. The SSS method offers a faster alternative by exploiting

the specific structure of these matrices.[20]

The SSS method leverages a two-step approach:

• Transformation and Approximation:

– Displacement equation methods transform the Toeplitz matrix into a Cauchy-

like matrix using techniques like Fast Fourier Transforms (FFTs).

– This Cauchy-like matrix has a special property: its off-diagonal blocks have a

low numerical rank.

– Taking advantage of this low-rank property, the method approximates the

Cauchy-like matrix with a more compact representation called a sequentially

semi-separable (SSS) matrix.

• Efficient Solution:

– The SSS representation allows solving the resulting Cauchy-like system effi-
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ciently in linear time and with linear storage requirements. This is due to

the precomputed compressions of the off-diagonal blocks (independent of the

specific Toeplitz matrix entries) and the efficient structure of SSS matrices.

• Benefits:

– The SSS method offers significant computational advantages compared to stan-

dard methods for solving large Toeplitz systems.

– The precomputation step allows for efficient reuse when solving multiple Toeplitz

systems with similar structures.

– The use of FFTs and the low-rank property of the off-diagonal blocks con-

tribute to the overall efficiency of the SSS method.

• Stages of the Algorithm:

– Precomputation: Compress the off-diagonal blocks of the Cauchy-like matrices

(independent of the Toeplitz matrix itself).

– Transformation: Convert the Toeplitz matrix into a Cauchy-like matrix using

FFTs (complexity: O(n log n)).

– SSS Construction and Solution:

∗ Construct a compact SSS representation from the precomputed compres-

sions (complexity: O(p2n) where p is the SSS matrix rank).

∗ Solve the resulting Cauchy-like system using the SSS representation (com-

plexity: O(p2n)).

– Solution Recovery: Recover the solution of the original Toeplitz system (com-

plexity: O(n log n)).

The SSS method offers a powerful tool for efficiently solving large Toeplitz systems arising

in various scientific and engineering applications[20]

3.3 Analysis and Comparision:

3.3.1 Experiment:

A Toeplitz matrix is randomly generated from size 100 to 500 at step size 50. The Toeplitz

matrix is approximated with the first circulant component, and an inverse is found for

this approximated circulant component. The errors in the approximation of this inverse
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are plotted against the size and shown in figure 3.1. Similarly, for every matrix, a linear

system is randomly generated, and the error in the solution using circulant decomposition

is found relative to the exact solution, and the error is shown in figure 3.1

Figure 3.1: Left image shows the error in the inverse of an approximated matrix concern-
ing the inverse of the original matrix. The right image shows the error in the solution of
the linear system found using the inverse of circulant decomposition.

3.3.2 Conclusion:

• W.F.Trench algorithm can be used to find the exact inverse of a Toeplitz matrix to

find the linear system’s solution in O(n2).

• Using the circulant decomposition method, the approximated inverse of a Toeplitz

matrix can be found inO(n log n), but the error due to approximation is not reliable,

so this method cannot be used to find the solution of Toeplitz linear solvers.

• Many super-fast algorithms like sequential semi-separable methods are available to

find the solution of Toeplitz linear solvers in O(n log n).
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Conclusions

This work first applies the circulant decomposition method explained in [2]. This circu-

lant decomposition can approximate a matrix as a sum of circulant matrices with fixed

periodic relaxations, reducing the arithmetic complexity of various matrix operations.

However, the error in any application depends on the specific application and the type of

matrix used.

First, matrix multiplication is studied by approximating various matrices using the cir-

culant decomposition followed by an iterative multiplication of these circulant matrices

(Chapter 2). The method is then compared against two potential competitors: low-rank

approximation and mean approximation. Later, the circulant decomposition method is

used to find the solution for Toeplitz linear solvers and two algorithms better than cir-

culant decomposition are also studied (Chapter 3).

These approximations and applications are studied for different types of matrices, in-

cluding some randomly generated from distributions (mean zero and mean non-zero)

(Appendix 2), some generated from experiments (synthetic DFT and dense DFT ma-

trices), and some derived from practical applications (images and bus networks). The

following conclusions are drawn from this work.

• Circulant Decomposition:

– Approximating a matrix using the circulant decomposition method with a par-

ticular number of circulant components is attractive depending on the matrix

type, i.e., the degree of dominance of a few circulant components represent-

ing the periodic nature of its entries. The weight distribution of the circulant

components of matrices depends on the elements of the matrix(distribution

31
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of the elements and/or periodicity of the elements). For a particular matrix,

as the number of circulant components considered for the approximation in-

creases, the error in the approximation decreases but at the cost of additional

computing.

• Multiplication

– The mean approximation and the low-rank approximation of matrix multipli-

cation are applicable only in restricted cases, whereas the circulant decompo-

sition is generally applicable to any two sufficiently large matrices.

– One iteration of the algorithm 1 (matrix multiplication using circulant decom-

position method) can be done in O(n2 log n2), with some error in the multipli-

cation. Still, this error can be reduced by recursively applying the algorithm

to the residues.

– For all matrix classes and their products studied (except the case of two mean-

zero random matrices), the relative error in the multiplication reduces with the

size of the matrices, for a given number of iterations.

• Toeplitz Linear Solvers:

– Trench algorithm gives exact inverse in O(n2).

– Sequential Semi-seperable methods gives approximated solvers iteratively in

O(n log n), but its precision has to be studied further.

– Circulant decomposition method is not suited for solving Toeplitz linear sys-

tems in generality, as the error in the approximation of the matrices can be

unsatisfactory in many cases.
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Discrete Fourier Transform:

An N -point Discrete Fourier Transform (DFT) is defined by the multiplication

X = Wx, where x is the input vector, W is the N ×N DFT matrix, and X is the DFT

of x. The transformation matrix W can be described as W =
(

wjk
√

N

)
j,k=0,1,...,N−1

, or more

explicitly:

W = 1√
N



1 1 1 1 · · · 1

1 w w2 w3 · · · wN−1

1 w2 w4 w6 · · · w2(N−1)

1 w3 w6 w9 · · · w3(N−1)

... ... ... ... . . . ...

1 wN−1 w2(N−1) w3(N−1) · · · w(N−1)(N−1)


where w = e−2πi/N is a primitive N -th root of unity, with i being the imaginary

unit (i2 = −1). Large exponents of w can be simplified using the identity wx = wx mod N .

This matrix is a Vandermonde matrix for the roots of unity, adjusted by the normalization

factor. The normalization factor 1√
N

and the exponent sign in w are conventions that

may vary in different contexts [21].

Transformation:

Direct Transformation:

Given a vector x of dimension n, where

x =
[
x0 x1 x2 · · · xN−1

]T

,

33



CHAPTER 5. APPENDIX-1 34

the DFT of x, denoted as X, is computed as X = Wx. Here,

X =
[
X0 X1 X2 · · · XN−1

]T

represents the DFT of x. To find X, we multiply the input vector x by the DFT matrix

W .

Inverse Transformation: To retrieve the original vector x from X, the inverse DFT is

used, given by x = W −1X, where W −1 is the inverse of the DFT matrix W . The inverse

DFT matrix W −1 is the conjugate transpose of W , scaled by 1√
N

. Therefore,

W −1 = 1√
N

W ∗,

where W ∗ denotes the conjugate transpose of W . By multiplying X by W −1, we obtain

the original vector x.

Time Complexity: Transformations using the matrix W typically require O(n2) oper-

ations, where n is the size of the vector. However, by utilizing the Fast Fourier Transform

(FFT), this time complexity can be reduced to O(n log n).

Fast Fourier Transform (FFT): The Fast Fourier Transform (FFT) is an algorithm

designed to compute the Discrete Fourier Transform (DFT) of a sequence, as well as its

inverse (IDFT), in a more efficient manner. The FFT achieves this by factorizing the

DFT matrix into a product of simpler matrices, significantly reducing the computational

complexity from O(n2) to O(n log n), where n is the size of the vector. This difference

in computational speed is substantial, particularly for large datasets where n can be in

the thousands or millions. Additionally, many FFT algorithms are more accurate in the

presence of round-off errors compared to directly evaluating the DFT. Various FFT al-

gorithms exist, drawing from diverse mathematical theories, including complex-number

arithmetic, group theory, and number theory [8]. There are several algorithms to compute

the DFT of a vector with lower time complexity:

• The Cooley-Tukey FFT algorithm: A divide-and-conquer approach that recursively

breaks down a DFT of any composite size n = n1n2 into smaller DFTs of sizes n1

and n2, along with O(n) multiplications by complex roots of unity, traditionally

called twiddle factors.

• Prime-Factor Algorithm: Applicable for n = n1n2 with coprime n1 and n2, this
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algorithm is similar to Cooley-Tukey but does not use twiddle factors.

• Rader-Brenner Algorithm: A Cooley-Tukey-like factorization that uses purely imag-

inary twiddle factors, which reduces the number of multiplications at the expense

of increased additions and reduced stability.

These FFT algorithms provide the DFT of a vector of size n with a time com-

plexity of O(n log n), which is significantly less than the O(n2) complexity of the straight-

forward DFT computation.

Circulant Matrix: In linear algebra, a circulant matrix is a square matrix in

which all rows are composed of the same elements and each row is rotated one element

to the right relative to the preceding row. It is a particular kind of Toeplitz Matrix.

Example: A circulant matrix C is a special form of Toeplitz matrix:

C =



c0 cn−1 . . . c2 c1

c1 c0 cn−1 . . . c2
... c1 c0

. . . ...

cn−2 . . .
. . . . . . cn−1

cn−1 cn−2 . . . c1 c0


(5.1)

In general, note that any circulant matrix Cn of size nxn has a vector representation:

c⃗n =
[
c0 c1 . . . cn−1

]
(5.2)

Concept of Diagonalizability: A matrix is said to be diagonalizable if it can be ex-

pressed as PDP −1, where D is a diagonal matrix and P is an invertible matrix. In other

words, diagonalizability allows us to simplify matrix operations by transforming the ma-

trix into a diagonal form.

Introduction to Discrete Fourier Transform(DFT): The Discrete Fourier Trans-

form(DFT) is a mathematical operation that transforms a sequence of complex numbers

into another sequence of complex numbers. A unitary matrix, denoted as F, represents

the DFT, which has special properties that make it useful for analyzing periodic signals

and cyclic structures.

Theorem: A circulant matrix Cn is diagonalizable by the DFT matrix. i.e, a circulant
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matrix Cn of size n × n can be written as: Cn = (Fn)−1diag(Fnc⃗n)Fn, diag(Fnc⃗) is the

n× n diagonal matrix whose diagonal entries are the entries from dft of vector c⃗n where

c⃗n is the vector representation of the circulant matrix Cn.

For this theorem, we need to prove that the columns of the inverse DFT matrix are

eigenvectors of any circulant matrix. The corresponding eigenvalues are the DFT values

of the vector defining the circulant matrix. We can conclude that a circulant matrix Cn

of size n× n can be written as:

Cn = (Fn)−1diag(Fnc⃗n)Fn (5.3)

Multiplying a circulant matrix by vector Let y = DFT (x⃗) = Fnx⃗ denote the DFT

of a vector x⃗ and led x⃗ = DFT −1(y) = Fn
−1y⃗ denote the inverse DFT. If Cn is circulant

with vector representation c⃗n, then multiplying it by a size-n vector x⃗ can be written as:

Cnx⃗ = ((Fn)−1diag(Fnc⃗n)Fn)x⃗ (5.4)

= (Fn)−1(diag(Fnc⃗n)(Fnx⃗) (5.5)

= DFT −1(diag(DFT (c⃗n))DFT (x⃗) (5.6)

= DFT −1(diag(v⃗)y⃗) (5.7)

= DFT −1(v⃗ ⊙ y⃗) (5.8)

= DFT −1(u⃗) (5.9)

Time Complexity:

• y⃗ = DFT (x⃗). Can be computed in O(n log n).

• v⃗ = DFT (⃗an). Can be computed in O(n log n).

• Hadamard product u⃗ = v⃗ · y⃗.

• Inverse DFT on u⃗. Can be computed in O(n log n).

Thus, we can compute Cnx⃗ in O(n log n)[22]. And any matrix multiplication with a

circulant matrix CnAn where Cn is a circulant matrix and An is any random matrix of

size nn can be done in O(n2 log n)
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Randomly Generated Matrices(Mean=0 Two categories of n× n matrices were

generated using a uniform distribution in numpy. One was periodic using a seed of 2n

random entries, and the other was non-periodic matrices:

• Periodic Matrices

– Toeplitz Matrix

– Hankel Matrix

• Non-Periodic Matrices

– General Matrix

– Symmetric Matrix

Toeplitz Matrix: A Toeplitz matrix, also known as a diagonal-constant matrix, is

characterized by having each descending diagonal from left to right being constant.

Example: Any n× n matrix A of the form

A =



a0 a−1 a−2 · · · · · · a−(n−1)

a1 a0 a−1
. . . . . . ...

a2 a1
. . . . . . . . . ...

... . . . . . . . . . a−1 a−2

... . . . . . . a1 a0 a−1

a(n−1) · · · · · · a2 a1 a0



is a Toeplitz matrix. Denoting the element at i, j of A as Ai,j, we have

Ai,j = Ai+1,j+1 = ai−j. Properties:

37
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• An n× n Toeplitz matrix may be defined as a matrix A where Ai,j = ci−j, for

constants c1−n, . . . , cn−1. The set of n× n Toeplitz matrices forms a subspace of

the vector space of n× n matrices (under matrix addition and scalar

multiplication).

• Addition of two Toeplitz matrices can be performed in O(n) time (by sorting only

on the value of each diagonal), while their multiplication can be done in O(n2)

time.

• Toeplitz matrices are closely connected with Fourier series, as the multiplication

operator by a trigonometric polynomial, compressed to a finite-dimensional space,

can be represented by such a matrix. Similarly, linear convolution can be

represented as multiplication by a Toeplitz matrix.

Hankel Matrix: A Hankel matrix, also known as a catalecticant matrix, is a square

matrix in which each ascending skew-diagonal from left to right is constant. A Hankel

matrix A is any n× n matrix of the form

A =



a0 a1 a2 · · · an−1

a1 a2 · · · · · · ...

a2 · · · · · · · · · a2n−4
... · · · · · · a2n−4 a2n−3

an−1 · · · a2n−4 a2n−3 a2n−2


In terms of its components, if the i, j element of A is denoted as Aij, and assuming

i ≤ j, then we have Ai,j = Ai+k,j−k for all k = 0, . . . , j − i.

Properties:

• Any Hankel matrix is symmetric.

• Let Jn be the n× n exchange matrix. If H is an m× n Hankel matrix, then

H = TJn where T is an m× n Toeplitz matrix.

– If T is real symmetric, then H = TJn will have the same eigenvalues as T up

to sign.

• The Hilbert matrix is an example of a Hankel matrix.

Random Generated Matrix(Mean non-zero): Matrix generated from a Gaussian

distribution was also studied for the application.
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Figure 6.1: 494-Bus

Matrix Market

Introduction The Matrix Market is a comprehensive repository of matrices utilized for

testing and benchmarking numerical algorithms across various domains within the

computational sciences. Its purpose lies in providing researchers and practitioners with

a standardized collection of matrices representing real-world problem instances,

facilitating the evaluation and comparison of algorithms’ performance and efficiency.

Significantly, the Matrix Market houses diverse matrices, including sparse and dense

structures, spanning disciplines such as linear algebra, optimization, graph theory, and

finite element analysis. The Matrix Market is pivotal in advancing computational

research, fostering collaboration, and driving innovation in algorithm development and

optimization by offering a centralized platform for accessing and sharing benchmark

datasets. We have selected the matrices bus-494 and bus-662 from the application area

of power systems and networks.

Bus-494: It is a power system admittance matrix from set PSADMIT from the

Harwell-Boeing Collection. The matrix size is 494× 494, 1080 entries. The structure

plot of the matrix is shown in figure 6.1. The matrix is real symmetric indefinite

positive definite, with 1666 non-zero elements; 494 elements are on the diagonal, 586

above the diagonal, and 586 below the diagonal.

Bus-662: It is a power system admittance matrix from set PSADMIT and the
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Figure 6.2: 662-Bus

Harwell-Boeing Collection. The matrix size is 662× 662, 1568 entries. The structure

plot of the matrix is shown in figure 6.2. The matrix is a real symmetric indefinite

positive definite, and it has a total of 2474 non-zero elements, out of which are 662 on

the diagonal, 906 above the diagonal, and 906 below the diagonal.

Images: Two images were selected from the Dog vs. Cat classification dataset available

on Kaggle, a well-established resource in computer vision research. This dataset

comprises numerous labeled images depicting household cats and dogs. The images

chosen for analysis are depicted in Figure 6.5. The cat image has dimensions of (306,

512, 3), while the dog image measures (250, 400, 3). Both images were converted to

grayscale and then resized to 2D arrays with dimensions of (250 and 250) to facilitate

processing. This resizing ensures uniformity in image dimensions for algorithmic

analysis.

DFT Matrices: A special structure of matrices of the form shown in the equation 6.1

is used to check the versatility of the algorithm developed. These matrices are

symmetric structures and arise in the case of DFT and are synthetically generated using:

Hp
ij = Hp

ji = e−0.5×∥i−j∥ × sin(i + 1) (6.1)

A DFT matrix provided by the MATRIX lab which is generated from physical
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Figure 6.3: Cat Figure 6.4: Dog

Figure 6.5: Images taken from Dog-Vs-Cat classification dataset from kaggle

experiments was also studied.
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Matrices discussed in Appendix 2. are generated in sizes ranging from 100 to 500,

increasing by 50 each time. These matrices are analyzed to understand the

approximation errors, considering the portion of weights used for approximations. Our

experiments considered two scenarios: one where matrices are approximated using a

log n number of circulant components and another where the matrices are approximated

using only one.

The following figures show the error in multiplication for different categories of matrices

for sizes ranging from 100 to 500. The algorithm 1 is executed log n times taking consid-

ering log n circulant components of each matrix in every iteration. 7.7 and 7.8 shows the

error in squaring of DFT matrix and dense matrices. square blocks of size for different

ranges are considered, and the errors for the corresponding size are plotted.

42
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Figure 7.1: Mean of the error in matrix approximation for random general matrix gen-
erated from uniform distribution for 100 samples, the top two figures are by considering
log n circulant components, and the bottom figures are by considering one circulant com-
ponent.
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Figure 7.2: Mean of the error in matrix approximation for symmetric matrix for 100
samples, the top two figures are by considering log n circulant components, and the
bottom figures are by considering one circulant component
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Figure 7.3: Mean of the error in matrix approximation for Toeplitz matrix for 100 samples,
the top two figures are by considering log n circulant components, and the bottom figures
are by considering one circulant component
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Figure 7.4: Mean of the error in matrix approximation for Hankel matrix for 100 samples,
the top two figures are by considering log n circulant components, and the bottom figures
are by considering one circulant component
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Figure 7.5: Mean of the error in matrix approximation for matrix generated from mean
zero distribution for 100 samples, the top two figures are by considering log n circulant
components, and the bottom figures are by considering one circulant component
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Figure 7.6: Mean of the errors in matrix multiplication for different combinations of
randomly generated matrices for the first two categories explained in section 4. The
matrix size varies from 100 to 500, with a step size of 50 running for 50 iterations for
each size.
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Figure 7.7: Error in multiplication of dft matrix with itself

Figure 7.8: Error in the multiplication of Dense matrix with itself
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