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ABSTRACT
This work presents two variants of Born-series methods, for the first time, providing a numerical
solution to the time-independent photoacoustic wave equation. Thesemethods are effective in pro-
viding accurate solution even when there is a mismatch in speed-of-sound between the source and
theambient region. The traditional Born-series (TBS) andconvergentBorn-series (CBS)methodshave
been systematically compared for a test imaging case. The solution was computed keeping speed-
of-sound outside the source as constant (1500m/s) and varying the same quantity from 1950 to
1200m/s inside the source (a disc with 5µm radius) over a large frequency band (7–2000MHz). The
TBS method fails to converge when the variation in the speed-of-sound is approximately > 22% or
< −11%. The CBSmethodprovides the required robust numerical solution even in case ofmismatch
in speed-of-sound in various regions of imaging domain.
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1. Introduction

The time-independent Photoacoustic (PA) wave
equation can be treated as an inhomogeneous Helmholtz
equation, whose solution has applications in various
!elds of science, engineering, and medicine. The range
of applications span from seismology to electron scatter-
ing [1]. For simple and regular geometries like spherical
and in!nite cylinder, the analytical solutions are readily
available in the literature [2,3]. For irregular geometries,
only approximate numerical solution can be computed,
an example of such numerical schemes include !nite dif-
ference time domain, pseudospectral time domain and
!nite-element methods. These methods either provide a
numerical solution for the second-order wave equation
or for a set of !rst-order di"erential equations.

The other class of methods solve integral equations
using Green’s function approach [4], with traditional
Born-series (TBS) method being the widely used espe-
cially for the inhomogeneous Hemlholtz equation. The
TBS converges for small particles and relatively small
scattering potential problems. The TBS method is not
e"ective if the particle size or scattering potential is
large. Recent work by Osnabrugge et al. [5] addressed
this issue by introducing a pre-conditioner into the
TBS expression and called it as convergent Born-series
(CBS) method. It has been shown that CBS method
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converges for arbitrarily large media, in turn provid-
ing accurate solution to the inhomogeneous Helmholtz
equation [5,6].

The time-independent PA wave equation with a mis-
match of the speed-of-sound between the source region
and surrounding media can be considered as inhomoge-
neousHelmholtz equation.Asmentioned earlier, for sim-
ple geometries exact analytical solutions are available [7].
The solution to time-dependent PA wave equation for
an acoustically inhomogeneous media can be computed
using k-Wave toolbox which implements pseudospec-
tral method [8]. Natalie et al. [9,10] proposed a trans-
fer function approach to solve inhomogeneous PA wave
equation and also performed image reconstruction. They
used non-delta input waveform (unlike Green’s function
approach) and showed that the reconstruction of initial
pressure can be improved signi!cantly. Further, previous
works involving Green’s function approach did not con-
sider acoustic inhomogeneity of the source [11,12]. The
existing solutionsmay not be accurate, for example, in the
computation of PAwave !eld from a red blood cell (RBC)
in which speed-of-soundmismatch with respect to saline
water is greater than 10%.

This work demonstrates that the CBS method can
be extended to solve time-independent inhomogeneous
PA wave equation for arbitrary large source region with
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mismatch in the speed-of-sound. This is also the !rst
time the Born-series methods have been applied in
providing solution to photoacoustic wave equation and
shown to be e"ective compared to the existing methods.
The results from the TBS and CBS methods have been
compared with analytical solutions in order to evaluate
their performance. The analytical (exact) solution have
been obtained for a circular source region (typical RBC
shape), and its speed-of-sound has been varied from 30%
to −20% in comparison to the ambient medium. The
numerical results presented in this work show that the
CBS method has a greater validity and provides a more
accurate solution than the existing TBS method, making
it universally applicable.

2. Material andmethods

Consider that the PA waves are generated by an acous-
tically inhomogeneous light absorbing region. The well-
known time-independent PA wave equation in this case
can be written as [7],

∇2ψ(r) + k2sψ(r) = iωµβI0
CP

, within the source, (1a)

∇2ψ(r) + k2fψ(r) = 0, in the surrounding medium,
(1b)

where µ, β , and CP are the optical absorption coe#-
cient, isobaric thermal expansion coe#cient, and speci!c
heat for the absorbing region, respectively; ω and I0 are
the modulation frequency and the intensity of the inci-
dent light beam, respectively [7]. Here, ks and kf indicate
the wave numbers inside and outside the PA source,
respectively. The analytical solution to Equation (1) can
be obtained easily for regular shapes (e.g. sphere, in!-
nite cylinder, layer, etc.) by solving the above equations
and by demanding continuity of the pressure and normal
component of the particle velocity at the boundary [7].
This is referred to as the exact method, which works for
any inhomogeneity (without size restriction) of arbitrary
strength. The PA !eld at a point r (outside the source) for
an in!nite cylinder of radius a becomes [7],

ψex(r)=A

[
J1(ksa)H1

0(kf r)
ksa[J1(ksa)H1

0(kf a)− ρ̂ ĉJ0(ksa)H1
1(kf a)]

]

.

(2)
Here, A = iµβIovsa/Cp, J and H1 represent the Bessel
function and the Hankel function of !rst kind, respec-
tively. The subscripts 0 and 1 dictate the order of each
function. In the above equation, ρ̂ = ρs/ρf and ĉ = vs/vf
are the dimensionless ratios for the density and speed-
of-sound inside the disc relative to those outside the

Figure 1. Schematic diagram of the PA source and surrounding
medium for computation of photoacoustic field. PML stands for
perfectly matched layer.

disc, respectively. The subscript ex represents the exact
solution.

The PA wave equation as given in Equation (1) can be
rewritten in a combined form as [5],

∇2ψ(r) + (k2f + iε)ψ(r) = −S(r)− V(r)ψ(r), (3)

where ε is in!nitesimally small and

V(r) =
{
k2s − k2f − iε, if |r| ≤ a
−iε, if |r| > a

(4)

similarly,

S(r) =
{
− iµβIoω

Cp
, if |r| ≤ a

0. if |r| > a
(5)

with S(r) being the source term and V(r) behaves as
the scattering potential in Equation (3). A representa-
tive schematic of the PA source along with surrounding
media that was utilized in this work is shown in Figure 1.

Using Green’s function method, the solution to
Equation (3) can be written as [4,5],

ψ(r) =
∫

g(r|r0)[V(r0)ψ(r0) + S(r0)]d3r0, (6)

where Green’s function g(r|r0) is de!ned as the solution
to,

∇2g(r|r0) + (k2f + iε)g(r|r0) = −δ(r− r0), (7)

δ is the Dirac delta function. It may be noted that in the
frequency domain, Green’s function in terms of Fourier
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transformed coordinates (p) can be expressed as,

g̃(p) = 1
(|p|2 − k2f − iε)

, (8)

which is useful in !nding the actual functional form of
g(r|r0). For example, Green’s function in the far !eld in
two and three dimensions for lossy unbounded medium
becomes,

g(r|r0) ≈
i
4



 2

π
√
k2f + iε|r|




1/2

ei
(√

k2f +iε|r−r0|−π/4
)

,

(9)
and

g(r|r0) ≈
ei

√
k2f +iε|r−r0|

4π |r|
, (10)

respectively. Equations (9) and (10) demonstrate that
Green’s function in both cases decays exponentially with
distance for !nite ε, which localizes the function and also
makes its total energy is !nite [5]. The convolution sum
presented in Equation (6) can be expressed in the matrix
form yielding,

ψ = GVψ + GS, (11)

whereG = F−1g̃(p)F, with F and F−1 as the forward and
inverse Fourier transform operators, respectively. The
TBS method can be arrived by expanding Equation (11)
recursively as,

ψTBS = [1 + GV + GVGV + · · · ]GS. (12)

The above in!nite series converges only when GV is less
than unity [5]. The TBS method has been found to be
e#cient only for solving the Helmholtz equation for the
small objects having weak scattering potential.

Multiplying by a pre-conditioner (γ ) on both sides of
Equation (11) results in [5],

γψ = γGVψ + γGS. (13)

This pre-conditioner helps the TBS to converge for large
structures [5], which forms the basis for CBS. Then
Equation (13) after rearrangement of terms reduces to,

ψCBS = MψCBS + γGS, (14)

where M = γGV − γ + 1. As in the previous case, an
in!nite series can be obtained by recursive expansion of

Equation (14) as,

ψCBS = [1 + M + M2 + · · · ]γGS. (15)

Even here, the above equation converges only if M<1.
Moreover, it converges for all structures if one chooses [5],

γ = i
ε
V(r), (16)

and

ε ≥ max|k2s − k2f |. (17)

In this work, the pressure !eld generated by a circular
solid disc has been computed by employing the proposed
TBS and CBS methods. Further, the computed results
have been systematically compared to the exact solution.

3. Computation of pressure field

The numerical experiments in this work were restricted
to two dimensions to limit the execution time. The
algorithm developed for the implementation of the
TBS and CBS schemes is summarized in Algorithm 1.
The two-dimensional computational grid was taken as
2048× 2048 with a pixel size of 100 nm (see Figure 1).
A perfectly matched layer (PML) of 100 grid points was
utilized to attenuate the propagating waves, which signif-
icantly reduce amplitudes of the re$ected waves arising
from the boundaries. Essentially, waves in the boundary
layer were dampened exponentially with decay constant√
ε. This condition may be implemented in practice by

de!ning a mask (AtnMsk) as,

AtnMsk(r)

=
{
exp(−

√
ε|r|), if |r| lies within the PML

1 otherwise.
(18)

Further, the convolution sums in Equations (11) and (14)
have been evaluated using a fast Fourier transformwhich
inherently implements the periodic boundary condi-
tions. The above step is important to wrap around the
boundaries and to obtain accurate estimates of the PA
!eld.

A circular disc with a = 5µm was placed at the cen-
tre. The exact method provided a closed-form solution
for such a disc (Equation (2)). The density of themedium
inside the PA source was considered to be the same as
that of the outside, ρs = ρf = 1000 kg/m3. The speed-
of-sound of the ambient medium was !xed at vf =
1500m/s. The numerical values of density and speed-
of-sound of saline water (which is a tissue mimicking
medium) at 27◦C are close to these values [11,12]. The
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Algorithm 1 Algorithm for computation of the pressure field using proposed TBS and CBS methods.
Input: amp; Size of the computational domain (Ny × Nx), grid size (dx = dy) and

amp; frequency array (f )
amp; Physical parameters (I0, µ, β , CP, vs, vf , a)

Output: amp; Steady-state pressure !eld, ψn+1
Step 1: amp; form = 1, 2, ..., length of f do Steps 2-6
Step 2 amp; Calculate ω, ks, kf , and ε
Step 3: amp; Computation of spatial distribution of various parameters within the

amp; simulation domain
amp; for j = 1, 2, ...,Ny do step A

A. amp; for l = 1, 2, ...,Nx do steps i-iv

i. amp; kx ← 2π l−Nx
2 −1

Nxdx

ii. amp; ky ← 2π j−Ny
2 −1

Nydy

iii. amp; |p|←
√
k2x + k2y

iv. amp; Evaluate V , S, g̃, γ and AtnMsk using Equations (4), (5), (8), (16) and
amp; (18), respectively

Step 4: amp; Initialization of pressure !eld
amp; ψn for the TBS and CBS as given in Equations (21) and (22), respectively

Step 5: amp; Determination of pressure !eld
amp; for n = 1, ..., 2000 do steps i-vii

i. amp; Estimate ψn+1 for the TBS and CBS employing Equations (19) and (20),
amp; respectively

ii. amp; Calculate Total error from Equation (23)
iii. amp; if Total error ≤ 10−4
iv. amp; break
v. amp; else
vi. amp; ψn← AtnMsk ψn+1
vii. amp;amp; end

Step 6: amp; Store steady-state pressure !eld, ψn+1

speed-of-sound within the source was varied as vs =
1950, 1800, 1650, 1500, 1350, and 1200m/s. Therefore,
mismatch of speed-of-sound has been within 30% to
−20% with respect to that of the ambient medium. The
performance of the TBS andCBSmethodswith respect to
the exact method have been evaluated under these con-
ditions. Optical and thermo-mechanical parameters for
the PA source were set to unity (I0 = 1, µ = 1, β =
1, Cp = 1) to limit the amplitude of the PA !eld with-
out a"ecting its spectral features [11,13]. A point detector
was placed at a distance of 82.7 µm from the centre to
record pressure data. All computations were performed
in Matlab environment and executed in a high perfor-
mance virtual machine (CentOS, Intel Core Processor
(Broadwell, IBRS) working at 2.19GHz, 128GB RAM,
40 Cores).

The PA !elds were computed for 274 frequency points
ranging from 7.3 to 2000MHz with an increment of
7.3MHz for the exact, TBS, and CBS methods. The

pressure data for the TBS and CBS algorithms were com-
puted in the following manner,

ψTBSn+1(r) = i"t2[g̃(p)"t2[V(r)ψTBSn(r) + S(r)]],
(19)

and

ψCBSn+1(r) = ψCBSn(r)− (i/ε)V(r)(ψCBSn(r)

− i"t2[g̃(p)"t2[V(r)ψCBSn(r) + S(r)]]),
(20)

where n is the iteration number and all multiplications
were performed element wise; the notations "t2 and i"t2
state the forward and inverse fast Fourier transforms in
two dimensions. For each frequency, at !rst V(r) and
S(r) were computed as de!ned in Equations (4) and (5),
respectively. Note that ε was set to be 0.8k2f . Green’s
function was also evaluated for each grid point in the
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frequency space. Initial pressure values were taken as,

ψTBS0(r) = i"t2[g̃(p)"t2S(r)], (21)

and

ψCBS0(r) = γ (i"t2[g̃(p)"t2S(r)]) (22)

for the two approaches, respectively. This was followed
by iterative computations. Total error along the centreline
was computed after each iteration,

Total error =
2048∑

m=1

|ψn+1(1024,m)− ψn(1024,m)|
|ψn(1024,m)|

.

(23)
The steady-state condition was met, when the error was
less than 10−4. If the steady-state condition was not satis-
!ed,ψTBSn+1 ( aftermultiplying it withAtnMsk as de!ned
in Equation (18)) was inserted in Equation (19) as an
input to proceed for the next iteration. The same steps
were also followed for the CBS method. The complete
numerical code is available at [14].

4. Results

Figure 2 shows the variation of the pressure !eld as a
function of frequency (7–2000MHz) for the numeri-
cal solution at di"erent speed-of-sound mismatch con-
ditions. The corresponding pressure !eld provided by
the exact method was also plotted for comparison. The
variation of the size parameter (kf a) for the entire fre-
quency range was presented on the top (along x-axis)
in each !gure. These curves exhibit well-known peaks
and dips pattern. The number of oscillations increases as
vs was decreased from 1950 to 1200m/s. Both the TBS
and CBS methods exhibit good agreement with the exact
result over the entire frequency/size parameter range (see
Figure 2(b–e)). The locations and depths of the min-
ima were well reproduced by the TBS and proposed
CBS methods as evident from these !gures. Figure 2(a,f)
displays that the CBS method provides accurate !ts to
the exact/analytical results. However, TBS curves (scale
along the right y-axis) demonstrate large deviation com-
pared to the exact method in Figure 2(a,f), where vs
was 1950m/s and 1200m/s, respectively. The di"erence
between TBS and exact/analytical solution is non-linear
as the frequency/size parameter increases. The nonlinear
behaviour distinctively appears for approximately kf a >

24 in Figure 2(a) and kf a > 8.5 in Figure 2(f).
Plots of the error for an example frequency of

505MHz versus iterationwere provided in Figures 3(a–c)
with varying speed sound-of-speed in source region.
The error for the proposed CBS method gradually
decreases as the iteration progresses in all cases, how-
ever, the TBS fails to converge when speed-of-sound

mismatch is −20 % with respect to that of the sur-
rounding medium (see Figure 3(c)). Even though these
plots are speci!c to frequency of 505MHz, the same
trend was observed with rest frequencies in the range
of 7–2000MHz. The TBS method converged over the
entire frequency range for vs = 1800, 1650, 1500 and
1350m/s (see Figure 2(b–e)), however, did not con-
verge for vs = 1950m/s when approximately kf a > 24
(i.e. f >1160MHz) and vs = 1200m/s with approxi-
mately kf a > 8.5 (i.e. f >400MHz) as also evident from
Figure 2(a,f), respectively. Further, the CBS technique
was found to converge for all conditions (mismatch in
speed-of-sound) and at all frequencies (7–2000MHz)
considered in this study (also refer to Figure 2).

The computational time required was more for the
proposed CBS method compared to the TBS method,
with maximum di"erence between them being approx-
imately 20% (for frequency of 2000MHz, the average
execution time of TBS method was 64 sec and proposed
CBS method was 77 sec across various vs values) as the
CBS method requires an additional pre-conditioning. As
expected the error is much higher in the case of TBS
method, when the speed-of-sound mismatch is −20%
(Figure 3(c)) even after 500 iterations (consistent with
plots in Figure 2(f)).

5. Discussion and conclusions

In this work, for the !rst time, the Born-series meth-
ods were deployed to provide numerical solution to the
time-independent PAwave equation, which retains terms
originating from acoustic inhomogeneity of the source
region. As stated earlier, for !nite ε, wave number is a
complex quantity, background medium becomes lossy
and thus, Green’s function decays exponentially with dis-
tance. Further, in this construct though Green’s function
decays exponentially with distance but the !nal solution
does not follow the same trend. This is because the scat-
tering potential compensates the attenuation by provid-
ing equal amount of gain to the solution. This works for
a homogeneous medium as well. The scattering potential
even for a homogeneous medium becomes non-zero (i.e.
V = −iε) in this approach.

The TBS and CBS techniques in general can be used
to compute solutions for various media with acoustic
inhomogeneity of arbitrary shape. The proposed CBS
method was shown to be e"ective compared to TBS
scheme especially for cases where the variation of the
speed-of-sound of the source region being greater than
22% or less than −11% with respect to the surround-
ing medium. The CBS algorithm has been developed by
utilization of a pre-conditioner (γ ) into the TBS scheme,
this pre-conditioner compensates for the speed-of-sound
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Figure 2. Plots of the pressure field over a frequency range of 7–2000MHz for exact, TBS, and CBSmethods for themedia having speed-
of-sound as vf = 1500m/s and the source region vs as (a) 1950m/s (b) 1800m/s, (c) 1650m/s, (d) 1500m/s, (e) 1350m/s, and (f ) 1200m/s.
The scale for the PA pressure data for the TBS method is along the right y-axis in (a) and (f ). The corresponding values of kf a are shown
on the top (along x-axis).

Figure 3. Plot of the error (in %) for an example frequency of 505MHz utilizing TBS and CBSmethods withmedia speed-of-sound being
vf = 1500m/s and source region vs as (a) 1800m/s, (b) 1500m/s, and (c) 1200m/s. Error at nth iteration has been obtained as, Error =
(|(|ψn|− |ψend|)|/|ψend|)× 100%, where suffix end indicates the last iteration. For all results, the pressure has been computed at the
detector location.

mismatch. Onsabrugge et al. [5] proved that the param-
eter γ and non-vanishing ε ensure convergence of the
CBS technique. Further, higher the value of ε, greater
the attenuation of the pressure wave within the boundary
region. The scattering potential (V(r)) appearing from
the speed-of-sound contrast acts as a potential well when
vs > vf or ks < kf . On the other hand, it behaves as a
potential barrier when vs < vf or ks > kf .

This work has shown that TBSmethod provides accu-
rate estimates even for large particles, if the speed-of-
sound mismatch lies between approximately 22% and
−11% (see Figure 2(b–e)). It also takes less computing
time than the proposed CBS approach as the computa-
tional complexity is lower in this case. For smaller speed-
of-sound mismatch problems, the TBS method can pro-
vide a computationally e#cient solution. For rest cases,

the CBS method is e"ective and provides quick conver-
gence. The theoretical framework presented here does
not include density mismatch between the source and
the ambient medium. Therefore, the role of density mis-
match on the performance of presented iterativemethods
(TBS and CBS) needs to be investigated. The theoretical
model can be employed to calculate the PA !eld for a tis-
sue if an ensemble of PA sources can be accommodated
within the computational domain. The e"ect of multi-
ple scattering, arising from speed-of-sound mismatch of
the PA sources with respect to the surrounding medium,
can also be better investigated using the proposed CBS
method.

In conclusion, the Born-series methods are e"ective
in providing accurate solutions for the time-independent
PA wave equation. Among the methods presented here,
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the CBS method provides a robust approach for incor-
porating acoustic inhomogeneity of the source region
compared to TBS method. It can provide accurate results
for arbitrarily large source with su#ciently strong speed-
of-sound mismatch (i.e. ≈ 30% to −20%). Future work
includes implementation of parallel computation for cal-
culation of PA signals generated by normal and deformed
RBCs in three dimensions.
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