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Abstract—In this article, we present a novel localization
and activity classification method for aerial vehicle using
mmWave frequency modulated continuous wave (FMCW)
Radar. The localization and activity classification for aerial
vehicle enables the utilization of mmWave Radars in secu-
rity surveillance and privacy monitoring applications. In the
proposed method, Radar’s antennas are oriented vertically to
measure the elevation angle of arrival of the aerial vehicle
from ground station. The height of the aerial vehicle and
horizontal distance of the aerial vehicle from Radar station on
ground are estimated using the measured radial range and
the elevation angle of arrival. The aerial vehicle’s activity is
classified using machine learning methods on micro-Doppler
signatures extracted from Radar measurements taken in an outdoor environment. To evaluate performance, various light
weight classification models such as logistic regression, support vector machine (SVM), Light gradient boosting machine
(GBM), and a custom lightweight convolutional neural network (CNN) are investigated. Based on the results, the logistic
regression, SVM, and Light GBM achieve an accuracy of 93%. Furthermore, the custom lightweight CNN can achieve
activity classification accuracy of 95%. The performance of the proposed lightweight CNN is also compared with the
pre-trained models (VGG16, VGG19, ResNet50, ResNet101, and InceptionResNet). The proposed lightweight CNN suits
best for embedded and/or edge computing devices.

Index Terms— Aerial vehicles angle, aerial vehicles height, angle estimation, angle of arrival (AoA), convolutional neural
network (CNN) classifier, frequency modulated continuous wave (FMCW) radar, ground station radar, height estimation,
mmWave radar, range estimation.
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I. INTRODUCTION

THE mmWave frequency modulated continuous
wave (FMCW) radars detect objects as close as

0.2 meters and as far as 300-400 meters away. The range,
velocity, and angle of arrival (AoA) of the targets can be
estimated using these Radars. Because of their operating
frequency, these Radars have several advantages, such as
small antenna sizes, for example, 77-81 GHz [1], [2].
Furthermore, these Radars are extremely durable and can
operate in adverse weather conditions such as rain, fog, and
dust [3]–[5]. These mmWave Radars, however, typically have
a limited number of transmitters and receivers due to cost
and complexity constraints. As a result, the performance of
these Radars is typically optimized to operate in azimuth and
provide a large field of view (FoV) in Azimuth [6]. However,
for a wide range of applications, it is preferable to have a
large FoV in both azimuth and elevation. It is critical in
applications such as ground stations to have a wide field of
view in both azimuth and elevation. A 2-dimensional antenna
array is one way to achieve a large FOV in both azimuth and
elevation, but this increases hardware complexity, cost, and
signal processing complexity.

The estimation of the AoA, which is a critical parame-
ter in target localization, necessitates the use of at least
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Fig. 1. The antennas of the mmWave Radar oriented in elevation
direction.

one transmitter and two receivers. With a larger number of
receivers, estimation performance can be improved. However,
depending on the antenna’s orientation, the estimation can
only be made in one of the directions, namely azimuth or
elevation. It is typically in the azimuth direction. This is
useful for estimating the angle of arrival of on-road vehicles
[7]–[10]. However, estimating the AoA and height of aerial
vehicles from ground stations with embedded hardware is still
an ongoing research topic.

The use of mmWave FMCW Radar to estimate the height of
an aerial vehicle/drone has been demonstrated in [11]. It was
obtained, however, by mounting the mmWave Radar module
on the aerial vehicle itself [11]. Aerial vehicle detection using
mmWave Radar has also been demonstrated in [12]. However,
in order to estimate the angle of arrival, mechanical rotation
has been utilized. In addition, the system proposed in [12]
is bulky and costly. This system has a bandwidth of only
1GHz. The classification of different types of UAVs has been
proposed in [13]. In this study, they classified various objects
using micro-Doppler signatures and empirical mode decom-
position, such as fixed-wing UAVs, rotary-wing UAVs, and
non-UAV objects. However, classifying UAV activity remains
unexplored.

To localize the aerial vehicle/drone from the ground station,
we propose keeping the antennas oriented in the elevation
direction, as shown in Fig. 1. A similar work on aerial vehicle
height estimation has been briefly reported in [14]. To the best
of our knowledge, this is the first work that uses ground station
mmWave FMCW radar to perform aerial vehicle localization
and activity classification.

Recording someone in a public place or on private property
where privacy might be reasonably expected is a privacy issue.
A rotating drone is suspicious of taking videos and photos near
the location where it is flying, and it is critical to identify

Fig. 2. System measurement setup.

such activity from the standpoint of security surveillance
and privacy monitoring. The article also makes a significant
contribution to the classification of aerial vehicle activities.
For the sake of illustration, we will only look at two activities:
rotating and non-rotating drones. However, the classification
can be expanded to include a broader range of activities.
Machine learning methods are used to classify activities based
on micro-Doppler signatures extracted from Radar measure-
ments. Existing work has considered drone type classification
using micro-Doppler signatures [15]–[17]. However, from the
standpoint of security and privacy monitoring, the activity
classification of a drone rotating on its axis has not yet
been investigated, particularly using small form factor ground
station mmWave FMCW Radars. For the activity classification
of the aerial vehicle, we use various light weight classification
models such as logistic regression, support vector machine
(SVM), Light gradient boosting machine (GBM), and a custom
convolutional neural network (CNN) along with radar data.

The rest of this paper is structured as follows. The
section II describes the system, the experimental setup, and
the signal processing details used to extract radial range and
angle of arrival information. The section III goes into detail
about the machine learning models and datasets used in this
work. The results are presented in the section IV. Finally,
in Section V, concluding remarks and potential future works
are discussed.

II. SYSTEM SETUP AND SIGNAL PROCESSING

In this section, system setup and signal processing details
are presented. The system setup is shown in Fig. 2 and the
experimental setup in an outdoor parking lot is depicted
in Fig. 3. The system consists of a Texas instruments (TI)
mmWave FMCW Radar with 3 transmitters and 4 receivers.
It has an integrated phased-locked-loop (PLL), complex base-
band mixer, and analog-to-digital converters [18]. It has band-
width of 4 GHz and the operating frequency range of 76 to
79 GHz. It has vertical/elevation beamwidth of ≈ 25◦ and
horizontal/azimuth beamwidth of ≈ 76◦ [18]. Radar is rotated
or oriented by 90◦ to have the antenna elements in the
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TABLE I
RADAR CONFIGURATION PARAMETERS

Fig. 3. Experimental setup in an outdoor parking.

elevation direction as shown in Fig. 1 and Fig. 2. This orien-
tation is required to estimate the angle of arrival in elevation.
Since, we have rotated the Radar by 90◦, vertical/elevation
beamwidth becomes horizontal/azimuth beamwidth, i.e. ≈ 76◦
and horizontal/azimuth beamwidth becomes vertical/elevation
beamwidth ≈ 25◦.

All the Radar configuration parameters are tabulated in
Table I. Measurements are performed by positioning the aerial
vehicle at certain distance and height from the Radar, then
covering several radial ranges from Radar and heights from
ground.

The raw intermediate frequency (IF) data is collected
from the Radar during the measurements and it is then
post-processed in MATLAB, which can also be accessed
in [19]. In FMCW mmWave Radars, the transmitted signal’s
frequency is changing linearly with time. This sweep in
frequency is also known as chirp. A set of these chirps forms
a Frame. We are using a frame which consists of 128 chirps.

The collected raw data is then post-processed in MATLAB.
Such 200 Frames have been used to get the IF data at every
measurement point.

A Drone of size (LxBxH) 322*242*84 mm has been used
in the measurements. Since we have done experiment with
a drone having small cross section, we are able to detect it
till ≈ 10 m range. Next, the range and angle estimation is
discussed in detail.

A. Range Estimation
For range estimation, the following steps are utilized.

• First, unwanted clutter is removed. The common algo-
rithm present is Constant False Alarm Rate (CFAR)
detection.

• Range (R) is estimated from 128 chirps. Each chirp
contains 256 samples (N) corresponding to frequency
bins ( fbin ) which are translated to range bins (Rbins ) as
follow.

fbin = (0 : N − 1)
fs

N
, (1)

Rbin = c fbin

2S
, (2)

where, fs = 10 MHz, c = 3× 108 m/s, and S = 29.982
MHz/μs are the sampling frequency, velocity of light
in vacuum, and the slope of chirp, respectively. The
one-Dimension Fast Fourier Transform (1D FFT) of the
sampled IF signal is done using (3). A Fast Fourier Trans-
form (FFT) is an algorithm that computes the discrete
Fourier transform (DFT) of a sequence. It converts signal
from its domain (time or space) to the frequency domain.
Mathematically it is shown in (3). Range is estimated
by detecting the peak in the 256-point 1D FFT of the
sampled IF signal.

Xk =
N−1∑
n=0

xne− j2πkn/N , (3)

where, N = 256 is number of sample in a chirp, k = 0 :
N − 1 is the element indexing or iterations, and xn is the
input IF signal of nth index.

• The maximum value is picked from Xk and frequency bin
corresponding to that peak gives the radial range value
(Rr ).

• The range is estimated for all 128 chirps in a frame. Then,
it is averaged over all of the 128 chirps to get the average
range estimation for a frame.

The estimated radial range for all measurements can be seen
in Table II.

B. Angle of Arrival Estimation
The graphical representation of the angle estimation of

aerial vehicle from ground station is shown in Fig. 4. The
angle estimation requires a minimum of 2 receiving antennas.
Phase information from the peaks of the range FFT plot have
been utilized to estimate the angle of arrival of the target.
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TABLE II
RADIAL RANGE AND ANGLE OF THE DRONE FROM THE RADAR IN METERS AND DEGREES

Fig. 4. Graphical representation of the angle estimation of the aerial
vehicles from ground station.

• The range FFT plot of each receiving antenna will have
peaks at the same location but will contain different phase
for different receivers as shown in Fig. 1.

• This phase difference (�φ) between the adjacent receiv-
ing antennas has been utilized to estimate the angle of
arrival of the target (drone) in elevation [20].

�φ = 2πdsin(θr)/λ,

θr = sin−1(λ�φ/2πd),

where, d is distance between two receiving antennas ≈
2 mm, λ is wavelength of signal used ≈ 3.8 mm, and θr
is angle of arrival from drone to Radar.

Fig. 5. Vertical FOV (side view).

• The details of the angle estimation are elaborated in
the Algo. 1 using the three pairs of adjacent receiving
antennas.

It can be observed from Fig. 4 and Algo. 1 that, first,
angle is estimated for all 128 chirps in a frame for adjacent
receiving antennas. It is then averaged over 128 chirps. The
same procedure is repeated and averaged for all 200 frames.
The whole process is repeated and averaged over all the
adjacent receiving antenna pairs (RX1-RX2, RX2-RX3, and
RX3-RX4). Table II refers to the estimated angle from the
Radar and radial range at different measurement points.

C. Height Estimation From Estimated
Radial Range and Angle

After obtaining the angle using the Algo. 1, we estimate
the height of the aerial vehicle from the ground. The height
of the drone and base distance of the drone from Radar can
be calculated from radial range and angle as shown Fig. 5.

V r = Rr ∗ sin(θr), (4)

Hr = Rr ∗ cos(θr), (5)

where, V r is the height of aerial vehicle from ground, Hr
is the horizontal distance of the aerial vehicle from Radar
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Fig. 6. Process to extract Micro-doppler signature of Aerial Vehi-
cle/Drone.

on ground, and θr is the estimated angle from the Algo. 1.
Table III contains the height and horizontal distance obtained
from Table II.

D. Micro-Doppler Signatures of Aerial Vehicles
The micro-Doppler signatures are extracted from the raw

Radar data obtained from the measurements in an outdoor
environment. These signatures are extracted by mmWave
Radar for 8 seconds (200 frames x 40 ms frame period). The
detailed process for extraction of these features is provided in
the following steps [21]:

• Raw IF data is collected from mmWave Radar and
arranged according to the receiving antennas, Rx1, Rx2,
Rx3, and Rx4.

[X1, X2, X3, X4] = raw_data(X),

• Each receiving antenna has the raw IF data for 200 frames
and each frame contains the data for 128 chirps.

X1[m, n] = [X1]200,128, X2[m, n] = [X2]200,128,

X3[m, n] = [X3]200,128, X4[m, n] = [X4]200,128,

• A 2-dimensional (2D) FFT is performed on the IF data
received on each receiver.

x1[k, l] = 1√
N

N−1∑
n=1

(
1√
M

M−1∑
n=1

X1[m, n]

exp− j2πmk/N
)

exp− j2πnl/N ,

x2[k, l] = 1√
N

N−1∑
n=1

(
1√
M

M−1∑
n=1

X2[m, n]

exp− j2πmk/N
)

exp− j2πnl/N ,

x3[k, l] = 1√
N

N−1∑
n=1

(
1√
M

M−1∑
n=1

X3[m, n]

exp− j2πmk/N
)

exp− j2πnl/N ,

x4[k, l] = 1√
N

N−1∑
n=1

(
1√
M

M−1∑
n=1

X4[m, n]

exp− j2πmk/N
)

exp− j2πnl/N .

• A peak is identified in this 2D FFT data of each receiver
on range side (k) and then selected the whole column
data (l) corresponding to that particular k is selected.

x1max[k, :] = maxk(x1[k, l]),
x2max[k, :] = maxk(x2[k, l]),
x3max[k, :] = maxk(x3[k, l]),
x4max[k, :] = maxk(x4[k, l]).

• The extracted data in the previous step, x1max , x2max ,
x3max , x4max is 1-dimensional (1D) data. The data
is used to extract the micro-Doppler signatures using
part-wise FFT on the x1max , x2max , x3max , x4max . The
total micro-Doppler signatures extraction process is sum-
marized in Fig. 6. The micro-Doppler features extracted
for non-rotating aerial vehicle/drone at 3.1 m shown
in Fig. 7a and aerial vehicle/drone at 3.1 m is shown
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Fig. 7. An example of Micro-Doppler signature of Aerial vehicle.

TABLE III
EXTRACTED INFORMATION ABOUT HEIGHT AND HORIZONTAL DISTANCE

in Fig. 7b. It can also be explained as Dimension of
x1max , x2max , x3max , x4max are 1 x l. Consider nb < l,
d , nb, and i_end = (l − nb)/d + 1,

i = 1 : i_end

y_x1(:, i) = x1max(1+ (i − 1)d : (i − 1)d + nb),

y_x2(:, i) = x2max(1+ (i − 1)d : (i − 1)d + nb),

y_x3(:, i) = x3max(1+ (i − 1)d : (i − 1)d + nb),

y_x4(:, i) = x4max(1+ (i − 1)d : (i − 1)d + nb).

• Once again, FFT is performed on this data to get the
micro-Doppler signatures.

w_x1 = 1√
N

N−1∑
p=1

(
y_x1(exp− j2πpnb/N )

)
,

w_x2 = 1√
N

N−1∑
p=1

(
y_x2(exp− j2πpnb/N )

)
,

w_x3 = 1√
N

N−1∑
p=1

(
y_x3(exp− j2πpnb/N )

)
,

w_x4 = 1√
N

N−1∑
p=1

(
y_x4(exp− j2πpnb/N )

)
.

• These micro-Doppler signatures are further processed
using machine learning methods for the activity classi-
fication. The details of the machine learning methods are
presented in Section III.

III. MACHINE LEARNING CLASSIFICATION MODEL AND

PERFORMANCE EVALUATION

This section presents the micro-Doppler signatures dataset
details and machine learning models for aerial vehicle/drone
activity classification. A custom CNN model is also presented
along with the conventional machine learning classification
methods.

A. Dataset
We have created an image database of 400 time-frequency

images by taking micro-Doppler signatures on the mmWave
Radar measurements data of Rotating and Not-Rotating
Drones at various radial distances from the Radar. We have
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Fig. 8. The architecture of the proposed CNN model.

considered various generic machine learning (ML) classi-
fication methods like Logistic Regression, Support Vector
Machine with Linear kernel and Light Gradient Boosting
Machine for classifying the drone activity. In addition to these
generic ML methods, we have also considered a classification
technique based on convolutional neural network (CNN).
We used the train_test_split function from the sklearn library,
which takes X, Y and test_size as inputs and returns X_train,
Y_train, X_test and Y_test as outputs. Based on the test_size,
which is chosen as 0.25 such that the function splits 75% of X
and Y to X_train and Y_train, and 25% of X and Y to X_test
and Y_test.

B. Model
The models we have used are:
• Logistic regression [22]
• Support Vector Machine (SVM) [23]
• Gradient Boosting Machine (GBM) [24]
• Proposed Convolution Neural Network (CNN)

The first ML model, Logistic regression is a basic regression
model, which has been used for classification of Radar images.
It consists of a single neuron and sigmoid function as the
activation, which gives the output in the range [0, 1]. We have
binarized the output and the model has been used for binary
classification, a rotating drone and non-rotating drone. The
hyperparameters of the model are as follows, number of
iterations = 100, normalization = L2 norm and tolerance =
0.0001.

The second model, Support Vector Machine (SVM) is a
binary classifier, which fits a hyperplane which acts as a

decision boundary to discriminate data from one class to
another. We have various kernels in the SVM model. In case
the data is linearly separable, we can use a linear kernel and
if data is not linearly separable we can then use kernels such
as polynomial kernel and radial basis function kernel which
separate the data linearly. The kernel used for our classification
model is a linear kernel.

As we have two classes, rotating and stationary, we have
considered binary classification. If we include more classes,
we can then extend the existing binary classification to
multi-class classification by splitting the multiclass classifi-
cation dataset to multiple binary classification datasets. This
can be done with two approaches, the first one is one vs
one and the second one is one vs All. In one vs one, a
n-class classification problem is converted to n*(n-1)/2 binary
classification problems, one for each class versus any of
every other class. In one vs all, a n-class classification
problem is converted to n binary classification problems,
one for each class versus every other class as another
class (all).

The third model, Gradient Boosting Machine (GBM) is a
classification model, which works on decision trees principle.
Light GBM is a gradient boosting machine which uses leaf
wise tree growth algorithms. This model best suits for large
size datasets and it may overfit if the data size is less. Here
data size represents the size of the dataset [number of inputs
x number of input features] that is fed to the model. i.e., our
training data set size is [300× 196608]. The hyperparameters
of the model are as follows, boosting type = gbdt, learning
rate = 0.1, min child samples = 20, num leaves = 31 and
min child weight = 0.001.
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Fig. 9. Confusion matrices of all classifying models.

Fig. 10. The training and validation accuracy of the proposed CNN
model.

All the above mentioned models are not Image classi-
fiers, and the inputs for these models are in the form of
one-dimensional vectors. A dataset is created with the images

Fig. 11. RMSE of height and base distance.

of shape (256, 256, 3) that are read from the image data-
base and reshaped to a one-dimensional vector of shape of
(1,196608)[1, 256 × 256x3] features for each input image.
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TABLE IV
PROPOSED CNN MODEL SUMMARY

The dataset is split such that 75% of data is used for training
and 25% is used for test/validation. The average classification
accuracy achieved for Logistic Regression, Support Vector
Machine and Light Gradient Boosting Machine classifiers are
93% for all 3 models.

We have also explored a convolution neural network for
better classification of images to rotating and non-rotating
drones. The architecture of the proposed CNN model is shown
in Fig. 8 and the model summary is shown in Table IV. The
model architecture consists of 6 2D-convolution layers with (3,
3) filters and rectified linear unit (ReLu) as activation function,
5 average pooling layers with (2, 2) filters, 2 dropout layers
with dropout of 0.2 and 0.5 to minimize overfitting, a flatten
layer and a softmax layer as output layer for classification. The
input image size to the CNN is (256, 256, 3), a 256 × 256
color image having 3 channels (RGB). The dataset is split in
a way that 75% of it is used for training and 25% is used for
test/validation. The network is trained with Adam optimizer
and sparse categorical cross entropy as loss function. The
confusion matrices of all classification models are shown in
Fig. 9. The training accuracy and validation accuracy of the
proposed model is shown in Fig. 10. The training accuracy
of 100% has been achieved while the test/validation accuracy
is saturated at 95%. Next, we compare various results obtained
in this work.

IV. RESULTS

Table III shows the estimated height and base distance
using (4) and (5). The root mean square error (RMSE) in the
estimation of the height of the drone and base distance of the
drone from Radar on ground is shown in Fig. 11. It can be
observed from the Fig. 11 that RMSE of the height estimation

Algorithm 1 Angle Estimation for Aerial Vehicles Using Four
Receiving Antennas
Require: f inal_angle for Raw data x having max_ f rame
= 200, max_chir p = 128;
for n← 1 to max_ f rame do

Ensure: % % Raw data x contains 3-D data, i.e., data cor-
responding to receiving antennas, for chirp f inal_angle
for max_ f rame = 200, max_chir p = 128 of Raw Data
x % %
x1(n)← x(n, 1))
x2(n)← x(n, 2))
x3(n)← x(n, 3))
x4(n)← x(n, 4))
for m ← 1 to max_chir p do

Ensure: % % FFT of Raw data x of receiving antenna-1,
2, 3, 4 of mth chirp, nth frame % %
Xz1(n, m)← F FT (x1(n, m)
Xz2(n, m)← F FT (x2(n, m)
Xz3(n, m)← F FT (x3(n, m)
Xz4(n, m)← F FT (x4(n, m)

Ensure: % % After zero-clutter removal % %
X1(n, m)← zero_clut_rmv(Xz1(n, m)
X2(n, m)← zero_clut_rmv(Xz2(n, m)
X3(n, m)← zero_clut_rmv(Xz3(n, m)
X4(n, m)← zero_clut_rmv(Xz4(n, m)

Ensure: % % Max function gives maximum value in FFT
data and its index. This index corresponds to the radial
range of aerial vehicle and Phase associated with it is
extracted % %
[phase1(m), range1(m)] ← max(X1(n, m))
[phase2(m), range2(m)] ← max(X2(n, m))
[phase3(m), range3(m)] ← max(X3(n, m))
[phase4(m), range4(m)] ← max(X4(n, m))

Ensure: % % Angle is estimated using two consecutive
receiving antennas having separation distance = λ/2 %
� 12(m)← sin−1(abs(phase1(m)− phase2(m))/pi)
� 23(m)← sin−1(abs(phase2(m)− phase3(m))/pi)
� 34(m)← sin−1(abs(phase3(m)− phase4(m))/pi)

end for
Ensure: % % Mean angle computation for over 128 chirps

% %
f r_angle12(n)← mean( � 12)
f r_angle23(n)← mean( � 23)
f r_angle34(n)← mean( � 34)

end for
Ensure: % % Mean angle computation for over 200 frames

% %
f _angle12← mean( f r_angle12)
f _angle23← mean( f r_angle23)
f _angle34← mean( f r_angle34)

Ensure: % % Mean angle estimation for all 3 consecutive sets
of receiving antennas i.e. 1-2, 2-3, 3-4 % %
f inal_angle← ( f _angle34 + f _angle23 + f _angle12)/3

is approximately 50 cm and RMSE of the base distance esti-
mation is approximately 20 cm. It can also be noted that drone
used in the measurements is of the size, 322*242*84 mm. This
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TABLE V
ACCURACIES OF THE VARIOUS CLASSIFYING MODELS

TABLE VI
COMPARISON OF OUR MODEL WITH PRE-TRAINED NETWORKS

error is not significant given the drone size. Accuracies of all
the models for activity classification including the proposed
CNN model are summarized in Table V. The classification
accuracies provided in the table are based on a dataset split
with holdout validation, with 75 percent of the data used for
training and 25 percent for validation. In the table, it can
be observed that we also included the classification accuracy
based on a k-fold cross-validation scheme with four-folds.
It can be observed that the proposed CNN model outperforms
compared to the conventional logistic regression, SVM, and
Light GBM models.

The performance of pre-trained models for our dataset
is evaluated and compared to our proposed CNN model
using 4-fold and 10-fold validation methods. The results
are summarized in Table VI. For comparison, we used five
pre-trained models (VGG16, VGG19, ResNet50, ResNet101,
and InceptionResNet). The table below shows the 4-fold and
10-fold validation accuracies. It can be observed that the
classification accuracy provided by these pre-trained models
is in the range of 75% to 85%. However, the validation
accuracy of our proposed CNN model is in the 90-95 percent
range. Based on this, we can conclude that our proposed
CNN classifies 10 - 15% more accurately than the pre-trained
networks. We tried many different combinations of parameters
for the construction of our proposed CNN network, such as
the number of layers, convolution layer filter size, activation
functions, dropout layers, and so on, to improve classification
accuracy, and this model outperformed the pre-trained models.
In addition, the proposed model is lightweight CNN. The
motivation behind implementing lightweight CNN is to reduce
the number of model parameters. Even with small datasets,
we can achieve high classification accuracy. Reducing the
amount of time required for convergence training. Reduc-
ing the network’s complexity and allowing it to support
mobile and/embedded applications. As it can be observed from
Table VI that the proposed lightweight CNN is just 1 MB.
Model parameters are considerably very small as compared to
pre-trained models.

When we compare the proposed model to Pre-trained mod-
els, we can see that there is a significant difference in the
number of model parameters and model size. Our model’s

total parameters are 93,552 parameters, which is very small
when compared to the pre-trained model parameters, which
are in the range of 10-50 million parameters. When compared
to the size of the pre-trained models, the proposed model is
also very small and less complex.

V. CONCLUSION

A novel localization technique for aerial vehicle have been
demonstrated using mmWave FMCW ground station Radar.
The proposed method will be highly useful in small scale
aerial vehicle traffic management ground stations. In future,
the Horizontal FoV can be further enhanced by mechanical
rotation. The activity of the aerial vehicle has been classified
using conventional machine learning methods and a custom
lightweight CNN model for security surveillance and privacy
protection applications. The custom CNN model achieves an
accuracy of 95%.

APPENDIX

The appendix contains the Algorithm 1 used in the data
post-processing.
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